
Team CVAP’s Picking System at the Amazon Picking Challenge 2015

Kaiyu Hang Francisco E. Viña B. Michele Colledanchise
Karl Pauwels Alessandro Pieropan Danica Kragic

Abstract— In this paper we will present our framework
used in the Amazon Picking Challenge in 2015 and some of
the lessons learned that may prove useful to researchers and
future teams participating in the competition. The competition
proved to be a very useful occasion to integrate the work of
various researchers at the Robotics, Perception and Learning
laboratory of KTH, measure the performance of our robotics
system and define the future direction of our research.

I. INTRODUCTION

There are three main criteria engineers evaluate when
determining the need of robots in certain applications: dirty,
dull and dangerous. Those are known as the 3D of Robotics.
The application proposed by the Amazon Picking Challenge
meets certainly the second criteria as picking and placing
objects in boxes is a very repetitive and dull task with
tremendous potential for automation. However, despite the
defined and controlled environment the application of robots
is still very challenging due to the nature of the objects to
handle. In this work we present the framework we developed
at the Robotic, Perception and Learning lab (RPL) in 2015
with the purpose of sharing the lessons learned with the
community. First we will describe the platform used in the
competition in Sec.II to motivate the strategy we adopted
in Sec.III. Then we will describe the core of our system
that controls the whole pipeline of actions using Behavior
Trees (BTs) in Sec.IV. Then we will describe our perception
module starting with the localization of the shelf in Sec.V
and detection of the objects in Sec. s VI. Finally we will
describe our grasping strategy in Sec. VII and draw some
conclusion about the limitations of our system in Sec.VIII.

II. PLATFORM

We used the PR2 research robot from Willow Garage
shown in Fig. 1 for the 2015 APC competition. The robot
consists of two 7-DOF manipulators attached to a height-
adjustable torso and equipped with parallel-jaw grippers. A
pan-tilt controllable robot head is located on the upper part
of the robot and equipped with a set of RGB cameras and
a Kinect camera which we used in our object segmentation
system. The robot is also equipped with a tilt-controllable
laser scanner located right beneath the head which we also
used for object segmentation purposes. A set of 4 wheels at
the base provides the robot with omnidirectional mobility,
which we exploited in order to control the robot back and

All team members contributed equally in this work.
K. Hang, F. E. Viña B., M. Colledanchise, K. Pauwels, A. Pieropan and

D. Kragic are with the Robotics, Perception and Learning Lab (RPL), CAS,
CSC at KTH Royal Institute of Technology, Stockholm, Sweden.

Fig. 1. Team CVAP’s PR2 robot platform used for the Amazon Picking
Challenge 2015 in Seattle, USA.

forth from the shelf to pick up objects and release them in
the target box.

We provided some minor hardware modifications to the
PR2 robot in order to address some of the challenges of the
picking task, namely custom-made extension fingers for the
parallel gripper in order to be able to reach further inside of
the bins of the shelf and a high resolution web camera which
we attached on the PR2’s head in order to get a richer set of
image features for our Simtrack vision system to detect the
target objects in the shelf.

The robot ran on an Ubuntu 12.04 computer with a real-
time Linux kernel that provides 1 KHz manipulator control.
All the high level task execution, perception, grasping and
manipulation software components were developed under the
Robot Operating System (ROS).

III. STRATEGY

In 2015 the competition consisted in picking one object
from each of the 12 bins of the shelf within 20 minutes. Each
bin could contain from one up to four objects making the
recognition and grasping of objects increasingly difficult. In
order to design our strategy we had three main limitations
to consider. First, the PR2 could not reach the highest level
of the shelf where three of the bins were located. Second,
two of the objects of the competition were bigger than the
maximum aperture of the PR2 gripper. Third, it takes the PR2
about 30 seconds to raise the torso from the lowest position
to the highest. Given the time requirements that operation
resulted very expensive, therefore, our strategy consisted in
starting from the lowest level of the shelf giving priority to



the bins with one or two objects thus minimizing the number
of times the PR2 would raise/lower its torso throughout the
task. Once the bins were cleared the PR2 would raise the
torso to address the next level of the shelf. The more complex
bins with multiple objects were left at the end disregarding
the level at which they were located. Given the limitation
of our robot, the known structure of shelf and the object to
grasp our framework would decide what grasp strategy to
apply from a pre-defined set of object-specific grasps. Once
the target object was grasped, the robot would retreat from
the shelf using the mobile base and release the object at a
predetermined position in a box.

IV. BEHAVIOR TREES

BTs are a graphical mathematical model for reactive fault
tolerant action executions. They were introduced in the
video-game industry to control non-player characters, and
they are now an established tool appearing in textbooks [1],
[2] and generic game-coding software such as Pygame1,
Craft AI 2, and the Unreal Engine3. In robotics, BTs are
appreciated for being highly modular, flexible and reusable,
and have also been shown to generalize other successful
control architectures such as the Subsumption architecture,
Decision Trees [3] and the Teleo-reactive Paradigm [4]. In
our framework, the use of BTs allowed us to have a control
architecture that is:

• Reactive: The Reactive execution allowed us to have a
system that rapidly reacts to unexpected changes. For
example, if an object slips out of the robot gripper,
the robot will automatically stop and pick it up again
without the need to re-plan or change the BT; or if the
position of a robot is lost, the robot will re-execute the
routine of the object detection.

• Modular: The Modular design allowed us to sub-
divide the behavior into smaller modules, that were
independently created and then used in different stages
of the project. This design allowed our heterogeneity
developers’ expertise, letting developers implementing
their code in their preferred programming language and
style.

• Fault Tolerant: The fault tolerant allowed us to handle
actions failure by composing different actions meant for
the same goals in a fallback. (e.g. different types of
grasps).

V. SHELF LOCALIZATION AND BASE MOVEMENT

As described in Sec. II, we used a PR2 as our robot
platform. Since the arms’ reachability of PR2 is relatively
small in comparison to the shelf size, it is not feasible to
define a fixed location for the robot to achieve the required
task. As such, we have to exploit the mobility to enlarge the
working space, so that the robot would be able to reach and
grasp from most of the shelf bins, as well as loading the
grasped objects into the order bin.

For this, shelf localization, which serves as the only
landmark in the workcell, is essential for our system to guide
the robot navigating between different grasping positions.

Since the robot movement accumulates localization errors,
it is necessary to localize the shelf in real time to close the
control loop for base movement.

Fig. 2. Left: An example of shelf localization shown in rviz. The x and y
coordinates of shelf_frame is defined as the center of two front legs, while
the height of it is the same as the base_laser_link. Right: The bin frames
are located at the right bottom corner of each bin.

As shown in Fig. 2, we use the base laser scanner to
localize the two front legs of the shelf. Observing that the
shelf is located in front of the robot, where no any other
objects are close by. Therefore, it is reasonable to find the
closest point cluster and consider it as one of the legs, while
the remaining cluster is considered as another leg. However,
this is not a reliable procedure as there could be noise or
other unexpected objects, e.g., human legs. As such, our shelf
localization consists of two procedures as follows:

• Detection: Once the front legs are detected, before the
system starts to autonomously work on assigned tasks,
a human supervisor needs to confirm to the robot that
the detection is correct. In case when the detection is
incorrect, we need to clear the occlusions in front of the
shelf until a confirmation is made.

• Tracking: While the robot is moving, given that we
know the motion model of the robot, we update the
shelf localization using a Kalman filter.

Having localized the shelf, we further estimate the shelf
bin frames based on the known mesh model, see Fig. 2. As
will be described in Sec. VII, knowing the bin frames will
facilitate the grasp planning in our system.

VI. VISION

A. Simtrack

We created high-quality 3D textured models from all ob-
jects provided for the challenge using the approach described
in [5]. To summarize briefly, each object is placed on a
textured background consisting of a collection of newspapers
and approximately 40 pictures are taken from various angles.
The object is then constructed using Autodesk123D catch
services [6] and postprocessed to separate it from the back-
ground, remove holes, reduce the mesh resolution, etc. For
the texture-based detection discussed next, we also extracted
SIFT-keypoints [7] from images synthesized by rendering
the model from multiple viewpoints. The final object models
were used for detection and grasp planning.

A large proportion of the challenge objects contained suf-
ficient texture for keypoint-based pose detection. When such
objects were present in the bin, we relied on a texture-based



pose estimation method. We used high resolution images
obtained from a Logitech C920 webcam mounted on the
robot head. We processed a central 1152×768 pixel region
of the full 2304×1536 input image for object detection.
The robot head was always oriented towards the bin under
consideration so that this region of interest was guaranteed
to contain the objects. Our object pose detection framework,
SimTrack, first extracts SIFT-features from the image and
matches these to the database of SIFT features extracted from
the object models in the modeling stage. In the detection
stage, the objects are identified, and a rough initial pose is
obtained. This pose is then iteratively refined by rendering
the textured object models at the current pose estimate, and
locally matching their appearance to the observed image [8].
SimTrack uses a phase-based optical flow algorithm in
this refinement (or tracking) stage to reduce sensitivity to
intensity differences between model and observed image.
SimTrack exploits the rich appearance and shape information
of the models and correctly handles occlusions within and
between objects. SimTrack is publicly available as a ROS
module [9].

B. Volumetric Reasoning

We designed a fallback strategy based on 3D point cloud
volumetric reasoning in case our system could not recognize
the objects using SimTrack. Knowing the location of the
shelf and the bins, as shown in Fig. 2, we use the PR2 tilting
laser scanner mounted on the torso to build an accurate point
cloud within the target bin. We use the 3D model of the shelf
and its estimated location to remove any point belonging to
the shelf from the constructed point cloud to obtain a cloud
of the inside of a bin. Then, we apply euclidean clustering to
generate plausible object hypothesis. Given that the number
of objects in the bin is known, we apply our clustering
strategy iteratively, increasing the distance threshold, in order
to obtain as many clusters as the expected number of objects.
Once the clusters are found we formulate the problem of
finding the right object to pick as a bipartite graph matching
problem where the nodes on one side are the found clusters
characterized by their volumes and the nodes on the other
side are the 3D models of the expected objects and their
corresponding volumes.

VII. MANIPULATION AND GRASPING

For robot arm motion planning we used the MoveIt!
software framework and its default randomized motion plan-
ners. Even though MoveIt! provides seamless integration
with ROS-enabled robots, we faced some difficulties when
applying it in our PR2 APC setup. The randomized planners
(e.g. RRT) often had difficulties in finding collision free
trajectories to move the robot arm in constrained spaces
such as the interior of the bins. Even when it did find
suitable trajectories, they would often generate very large
joint displacements even for small end-effector Cartesian
motions, which increased the chance of generating collisions
with the shelf. We partially alleviated these problems by
exploiting the simpler 2D kinematic motion control of the

robot base e.g. to retreat from the shelf. Optimization based
motion planners and a more specialized kinematic structure
of the robot are possible directions of work that would
address these issues.

Once the target object is detected, the object frame is
obtained from our vision system. Given that the PR2 is
equipped with parallel grippers, we must then decide from
which position and in which direction the gripper is going
to approach the object in order to then grasp the object
in a secure way. For this, we always project the object
frame based on the bin frame such that the X axis of the
object frame points inwards the shelf, and the Z axis points
downwards. Note that in order to ensure that the object can
be approached without generating collisions, we manually
labeled all objects offline so that the X axis returned from
the vision system can always be approached with the gripper,
i.e. that the gripper opening is wide enough to grasp the
corresponding side of the object. Thereafter, similarly to the
grasping stages in [10], our grasping system works in the
following steps:

• Pre-grasping: The gripper is posed in front of the bin
and aligned in X axis of object frame, the gripper’s
opening direction is aligned in the XY plane of object
frame.

• Approaching: The gripper approaches the object in
X direction until a pre-determined depth in the object
frame is reached.

• Grasping and lifting: The gripper closes and lifts the
object to a pre-determined height. At this point, we read
the gripper’s joint angle to check whether the object is
grasped. If not, the system will return failure and give
control back to the behavior tree. Otherwise, it returns
success and continue to the next step.

• Post-grasping: When the object is grasped, it is not
trivial to plan a motion to move the arm out of the
shelf, especially for large objects. Therefore, we first
move the object to the bin center, and then move the
whole robot backwards. Once the object is out of the
shelf, the robot goes to the order bin and puts the object
into it.

In cases when the target object is very small, e.g., tennis ball
and duck toy etc., the approaching procedure shown above is
not able to reach the object due to the collision with the bin
bottom. In those cases, our system will first try to approach
the above area of the object, and then move downwards to
reach the desired grasping pose. It is worthwhile noticing
that, dividing the grasping motion into steps significantly
increased the success rate for MoveIt! to find solutions within
a short time limitation, since the above steps efficiently
guides the motion planner through narrow passages posed
by the small bin areas.

VIII. CONCLUSION

We presented the framework used in the APC 2015 and
the challenges that we faced. Overall, perception was the
most challenging component for the competition although the
challenges inherent to manipulation and grasping should not



be underestimated. We can propose the following suggestions
to researchers and engineers designing bin-picking robotic
systems given our experience at the APC 2015:

• Robot kinematic design. In order to facilitate motion
control of the robot manipulator and minimize the risk
of generating collisions it is best to design its kinematic
structure to be completely tailored to the task instead
of a general purpose humanoid kinematic configuration
such as our PR2 robot.

• Grasping via suction devices. Using suction devices
for grasping would have greatly increased our grasp
success rate. Suction is the de facto solution to robot
grasping in many industrial applications, including robot
bin picking. Part of the reason for this is that suction
is in general more tolerant to errors in perception and
motion control since it is less demanding in terms of
where to position the gripper relative to the object to
be grasped. An object whose size is comparable to the
maximum opening of a robot’s parallel gripper requires
very precise positioning of the gripper, otherwise the
robot will unintentionally push the object away when
approaching it. On other hand, suction devices have a
higher likelihood of yielding a successful grasp under
positioning errors as long as it is still in contact with
part of the object’s surface. This also means that the
requirements for the perception system could be low-
ered, e.g. by segmenting identifying flat object surfaces
instead of performing full 6DOF pose estimation and
requiring less accurate object pose estimation.

• Deep learning for object detection. Given the impres-
sive results of convolutional neural networks in recent
years, our perception system would greatly improve
its recognition accuracy using a network trained to
recognized the objects used in the challenge. There are

well known networks that can localized objects in real
time, it would be interesting to see how deep learning
can be leveraged to estimate the 6 DOF of objects.

ACKNOWLEDGMENTS

This work has been supported by the Swedish Research
Council (VR), the Swedish Foundation for Strategic Re-
search (SSF), and the EU FP7 program. The authors grate-
fully acknowledge the support.

REFERENCES

[1] I. Millington and J. Funge, Artificial intelligence for games. CRC
Press, 2009.

[2] S. Rabin, Game AI Pro. CRC Press, 2014, ch. 6. The Behavior Tree
Starter Kit.

[3] M. Colledanchise and P. Ögren, “How Behavior Trees Modularize
Hybrid Control Systems and Generalize Sequential Behavior Com-
positions, the Subsumption Architecture, and Decision Trees,” IEEE
Transactions on Robotics, vol. 33, no. 2, pp. 372–389, April 2017.

[4] M. Colledanchise and P. Ögren, “How Behavior Trees Generalize the
Teleo-Reactive Paradigm and And-Or-Trees,” in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), October
2016.

[5] F. T. Pokorny, Y. Bekiroglu, K. Pauwels, J. Butepage, C. Scherer,
and D. Kragic, “A database for reproducible manipulation research:
CapriDB — Capture, Print, Innovate,” Data in Brief, vol. 11, pp. 491–
498, 2017.

[6] “Autodesk,” http://www.123dapp.com, accessed: 2017-05-01.
[7] D. G. Lowe, “Distinctive image features from scale-invariant key-

points,” IJCV, vol. 60, no. 2, pp. 91–110, 2004.
[8] K. Pauwels and D. Kragic, “SimTrack: A simulation-based framework

for scalable real-time object pose detection and tracking,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, Hamburg,
Germany, 2015.

[9] “SimTrack,” https://github.com/karlpauwels/simtrack, accessed: 2017-
05-01.

[10] K. Hang, M. Li, J. A. Stork, Y. Bekiroglu, F. T. Pokorny, A. Billard,
and D. Kragic, “Hierarchical fingertip space: A unified framework for
grasp planning and in-hand grasp adaptation,” IEEE Transactions on
Robotics, vol. 32, no. 4, pp. 960–972, Aug 2016.

http://www.123dapp.com
https://github.com/karlpauwels/simtrack

	INTRODUCTION
	Platform
	Strategy
	Behavior Trees
	Shelf Localization and Base Movement
	Vision
	Simtrack
	Volumetric Reasoning

	Manipulation and Grasping
	Conclusion
	References

