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Abstract— We propose the Dexterous Manipulation Graph
as a tool to address in-hand manipulation and reposition an
object inside a robot’s end-effector. This graph is used to plan
a sequence of manipulation primitives so to bring the object to
the desired end pose. This sequence of primitives is translated
into motions of the robot to move the object held by the end-
effector. We use a dual arm robot with parallel grippers to test
our method on a real system and show successful planning and
execution of in-hand manipulation.

I. INTRODUCTION

Repositioning an object inside a robot’s hand, known as
in-hand manipulation, is an open problem in robotics. Human
in-hand manipulation is a rich combination of various grasp-
ing movements, including regrasping, sliding and rotating the
object. These motions are enabled by the complex human
hands, and in particular by their dexterity.

The dexterity of a hand is the ability to perform motions
that manipulate a grasped object. In robotics, two terms are
commonly used:

1) Intrinsic dexterity denotes the ability of the robot’s
hand to manipulate the object using its several degrees
of freedom (DoF). End-effectors with high intrinsic
dexterity often mimic the structure of the human
hand [1], [2]. Alternatively, the hand can be simpler
and the end-effector is designed specifically for the
particular task it has to solve [3], [4].

2) Extrinsic dexterity is the ability to compensate for the
lack of DoF using external supports, such as friction,
gravity and contact surfaces [5]. It enables dexterous
manipulation also with simple parallel grippers.

In this paper, we use a dual arm robot to control the pose
of an object held by it. Dual arm robots are becoming widely
diffused (e.g. Baxter, Yumi), but the most common end-
effector is still a simple parallel gripper. We enhance the lack
of dexterity of the gripper by using the two arms. Therefore,
our system combines resources extrinsic to the hand but
intrinsic to the robot: while it uses a poorly dexterous end-
effector, it compensates with the several DoF available in a
dual arm system.

The main focus of dexterous manipulation is to move an
object held by the gripper to achieve different grasp poses.

1Silvia Cruciani, Christian Smith and Danica Kragic are with
the Robotics, Perception and Learning Lab, EECS at KTH Royal
Institute of Technology, Stockholm, Sweden. {cruciani, ccs,
dani}@kth.se

2Kaiyu Hang is with the Department of Computer Science and Engi-
neering and the Institute of Advanced Study at Hong Kong University of
Science and Technology, Hong Kong. kaiyu.hang@yale.edu

∗This work was supported by the Swedish Foundation for Strategic
Research project FACT, by the HKUST initiation grant IGN16EG09 and
by the HKUST-KTH collaboration grant SSTSP-FP802.

Fig. 1: The blue arrows show the DMG’s derivation: the object’s shape
is subdivided into small areas, and their connectivity is refined to describe
the admissible motions of one fingertip on the object. The orange arrows
show the progression of the repositioning: the DMG provides a sequence
of movements from the initial fingers’contacts (in red) to the desired ones
(in green); then, this sequence is executed by the robot.

Past works mostly focused on the end-effector design and
control. Therefore, there is a lack of quick and intuitive
solutions for planning the in-hand motion of the object.

We propose the Dexterous Manipulation Graph (DMG) as
a solution for planning dexterous manipulation. The DMG is
a graph representation of the possible motions of one finger
in contact with the object’s surface. This graph is used to
plan sequences of movements, which we call manipulation
primitives, to change the contact points on the object so that
it is manipulated towards the desired pose. This sequence of
movements is then translated into motions of the dual arm
robot. Fig. 1 summarizes the procedure for generating the
DMG, and shows a simple example of its use.

In contrast with previous works, we do not require an
accurate contact modeling. Our solution provides a way to
move rigid objects inside the gripper, even with complex
object shapes and for large scale manipulation.

II. RELATED WORK

Dual arm systems can be used to manipulate objects using
two grippers at the same time [6]. In particular, we use the
Extended Cooperative Task Space (ECTS) [7] to formulate
the execution of the motions necessary to reposition an object
to the target pose. The ECTS task specification [8] describes
different manipulation scenarios, but it does not address the
problem of moving an object inside the robot’s gripper.

The method for dual arm manipulation proposed in [9]
exploits a state transition graph of object motions. This graph
is used to achieve whole-body contact using a humanoid
robot, so it exploits both contacts with the hands and with
the forearms and possibly other links. In this case, the
transition graph is generated by testing the outcome of basic
operations on the object, e.g. lifting or sliding. Therefore, this



method requires a physical model of both the object and the
environment. Moreover, it does not deal with complex object
shapes because the purpose is changing the configuration of
big objects for stable transportation.

The “IK-switch” move designed in [10] allows a system
of two manipulators to reorient a grasped object. However, it
is a regrasping move, therefore the change in configuration is
obtained by releasing and grasping the object multiple times
and not by moving the contact points on it, which limits the
manipulation possibilities.

Despite the use of a dual arm system, our main objective
is dexterous manipulation with the end-effector. In-hand
manipulation is a widely studied problem. However, most
of the available works focus on the control aspect of this
problem and often rely on high fidelity dynamic models,
and on highly precise and rich sensory input from motion
capture systems and force and tactile sensors.

The Hierarchical Fingertip Space grasping method [11]
synthesizes a grasp by segmenting the object into small areas,
analyzed according to the curvature of the surface, that can be
used for contacts with the fingertip. Using tactile feedback,
the grasp configuration on the object can be changed, to
increase stability, by moving one finger to a new contact
point. However, this change of the contact point does not
lead to a new object configuration: it is only a more stable
version of the previous grasp.

In [12] the authors address the problem of planning joint
motions of a multi-fingered hand to change the pose of the
object inside it. Their method, called relaxed-rigidity con-
straint, has the advantage of relying only on the kinematics,
without the need for the knowledge of dynamic properties
of the object. However, it achieves only small changes in
the pose of the objects. Moreover, the repositioning is not
obtained by changing the grasp on the object because the
contact points are kept stable. Therefore, the correction of
the object pose with respect to the end-effector relies on the
motion of the finger joints, which are required to have more
than 1 DoF.

Similarly, in [13] the authors achieve a stable grasp by
moving the two fingers with 3 DoF each to reach a new
configuration of the object.

A work that instead focuses on simple parallel grippers
is the one described in [14], which also addresses the
problem of planning a sequence of motions for repositioning
the object. The extrinsic dexterity is provided by multiple
external fixtures that have been designed for proper object
sliding and rotation. The sequence of pushes against these
fixtures necessary to change the grasp is produced by a
sampling-based planner. This planner uses a combination of
RRT* and an inverse dynamic solver that, given the object’s
geometry, its dynamics properties, and the gripping force,
models the contact between the object and the gripper or the
external pusher. For a successful action, this work relies on
an accurate dynamic model, including contact models, and
predefined additional supports in the environment.

Strategies that allow for a simpler change in the grasp with
a parallel gripper have also been explored. Pivoting [15], [16]

is the rotation of the object around a single axis. Sliding [17]
is the planar translation of the object. By combining these
two strategies, it is possible to obtain a wider range of
changes in the object’s configuration.

In our approach, the DMG plans a sequence of simple
motions, named manipulation primitives, whose combination
moves the object inside the gripper to the desired pose.

III. DEXTEROUS MANIPULATION GRAPH

The Dexterous Manipulation Graph DMG=<N, EDMG>
is a disconnected undirected graph. A node, or vertex,
nij= < pi, Aij > ∈ N is a tuple, containing information
about the position of the contact point pi and about possible
finger’s orientations in that contact point Aij . An edge
enijnhk

∈ EDMG connects two nodes nij and nhk if it is
possible for the fingers to move from one to the other using
the manipulation primitives.

Section III-A defines these manipulation primitives. Then,
we explain how to generate the DMG in section III-B and
analyze the complexity of the proposed algorithm in section
III-C. The graph search for obtaining a sequence that moves
the object to the goal pose is described in section III-D
and the obtained path of the contact points on the object is
summarized in section III-E. Finally, section III-F presents
the DMG as a tool to analyze the manipulability of an object.

A. Manipulation Primitives

In our method, the object is controlled to move inside
the gripper using a combination of simple motions. These
motions are defined with respect to the contact point between
the fingertip and the object. Their execution requires an
adjustment of the pressure exerted by the finger on the object
to allow it to move, and external forces that drive the motion.

For the purpose of dexterous manipulation by changing
the contact points between the fingers and the object, we
have identified the following manipulation primitives:

1) Translation (Fig. 2a): in this motion, the contact point
slides between two points pi and ph on the surface of
the object and the orientation of the object’s reference
frame with respect to the gripper’s reference frame
remains constant.

2) Rotation (Fig. 2b): in this motion, the contact point is
fixed, but the object’s reference frame changes by a
planar rotation r around the contact point.

3) Roto-translation (Fig. 2c): in this motion, the contact
point slides between two points on the object’s surface,
and the orientation of its reference frame changes at
the same time, not limited to planar rotation changes.

(a) Translation (b) Rotation (c) Rototranslation

Fig. 2: The three manipulation primitives that describe the motion of the
contact point between the fingertip and the object. The finger of a parallel
gripper is represented in gray, and its fingertip in black.



Fig. 3: Examples of Dexterous Manipulation Graphs for different objects.

The first two motions can be obtained with a non-prehensile
pushing on the object in certain directions. A subset of
motions falling in the third category can be described as
a sequence of the first two. The remaining roto-translations
require additional torque that is more difficult to provide. For
instance, the second arm of the robot can grasp the other end
of the object and move it while the first gripper adjusts the
gripping force to allow the contact point to slide.

In this work, we focus on motions that do not require
additional grasp planning and multiple grasps on the object.
Therefore, we designed the DMG to provide a solution that
is composed only of the first two primitives. However, we
aim to provide a solution for problems that involve multiple
grasps and regrasps in our future developments of this work.

In our implementation, the manipulation primitive is exe-
cuted by providing an additional contact point on the object
using the second arm of the robot and pushing with one or
both arms. The description of the dual arm motions for this
execution is presented in section IV.

B. Graph Generation

The DMG is generated by analyzing the shape of the
object, represented as a point cloud. This point cloud is
segmented into small areas, and their adjacency is analyzed
and refined. The example graphs in Fig. 3 represent only
a partial visualization of the information contained in the
DMG. However, this visualization is intuitive and shows a
rough example of what the graph provides.

The first step towards obtaining the DMG is dividing the
object into small areas. To segment the object into connected
areas, we use the method of supervoxels for point clouds
[18]. After selecting the desired resolution, chosen according
to the object’s dimensions and the desired precision of the
graph, this segmentation subdivides the object into areas that
are grouped according to common characteristics, such as
the geometric information. To each area, called supervoxel,
correspond a centroid, which is a point on the surface of
the object, and a normal to this surface. The centroid of the
i-th supervoxel, pi, is considered a possible contact point
between the fingertip and the object.

Each supervoxel is adjacent to its neighboring areas, and
we keep this adjacency information in an initial connected
graph G =<V,E>. Its vertexes v ∈ V correspond to points
pi on the object. In contrast, the nodes of the final DMG
contain additional information other than the centroid of the
corresponding supervoxel. The process for generating the

Algorithm 1: graph generation
Input : G, l, as
Output: DMG, CDMG

1 V ← vertices of G // v ∈ V is a point on the object
2 E ← edges of G // eij edge between i and j

3 foreach v ∈ V do
4 n̂v ← normal in v
5 foreach w adjacent to v do
6 n̂w ← normal in w
7 if ||n̂v − n̂w|| > δ then
8 E ← E r {evw}

9 if v is isolated then
10 V ← V r {v}

11 CG ← connected subgraphs in G
12 N ← ∅ // empty set of nodes
13 foreach v ∈ V do
14 A← ∅ // empty set of admissible angles
15 foreach a ∈ {0 : as : 360} do
16 if a is admissible with finger length l then
17 A← A ∪ {a}

18 if A is empty then
19 remove v from V and from its component

Cv ∈ CG
20 else
21 Av ← ∅ // empty set of angle components
22 j ← 0
23 foreach sequencial set in A do
24 Avj ← jth sequencial set in A
25 nvj ←< v,Avj >
26 N ← N ∪ {nvj}
27 Av ← Av ∪ {Avj}
28 j++

29 EDMG ← empty set of edges
30 foreach Ci ∈ C do
31 Vi ← points in Ci

32 Ei ← connections in Ci

33 foreach v ∈ Vi do
34 foreach Avj ∈ Av do
35 foreach w adjacent to v in Ci do
36 foreach Awk ∈ Aw do
37 if Avj ∩Awk 6= ∅ then
38 EDMG ← EDMG ∪ {envjnwk}

39 DMG←< N,EDMG >
40 CDMG ← connected subgraphs in DMG
41 return DMG, CDMG

DMG from G is summarized in Algorithm 1 and explained
below.

Once the object has been subdivided, a first refinement
of the connections is performed. Given the normals n̂i and
n̂h of the i-th and h-th adjacent supervoxels, the connection
between pi and ph is removed if ‖n̂i−n̂h‖2>δ. The threshold
δ ensures that the fingertip does not move across sharp edges,
and it can be adjusted to allow for motions on uneven or
curved surfaces to the desired degree.

After refining the connectivity, the graph is divided into
separate connected components CG, on which the fingertip
can slide and rotate while maintaining contact. However, we



Fig. 4: The point p0 on the surface of this plug-shaped object corresponds
to two different and disconnected nodes in the DMG, n00 and n01, because
a gripper’s finger can grasp it with two separate angle ranges, A00 and A01.

need to take into account the finger’s body, and not just
the fingertip, when executing different movements on the
objects. Therefore, we further refine the adjacency assuming
a finger of length l of a parallel gripper. In fact, collisions
can occur due to non convex shapes and due to objects being
longer than the finger.

We discretize the possible orientations that a finger can
assume in the set [0◦, 360◦) with a step as. A finger can be
in contact with the object at a point pi and it can assume
only orientations that are not in collision. These orientations
belong to the set of possible angles Ai. If this set is empty,
the point is removed from the graph because it is impossible
for the gripper to grasp there.

The set of possible angles Ai is then further analyzed
to finally obtain the DMG and the connection between its
nodes. The angular component Aij ⊆ Ai of a node nij
is a set of admissible orientations that are in a continuous
sequence among the ones in Ai. More specifically, the finger
is able to rotate from the minimum angle in Aij to the
maximum angle using a single continuous rotation, without
encountering collisions. A connection between two nodes nij
and nhk, corresponding to the contacts pi and ph, is inserted
in the DMG only if Aij ∩Ahk 6= ∅.

If an area has multiple angular components, the corre-
sponding nodes in the DMG are disconnected because the
finger cannot rotate at that contact point between the two
disjoint sets of orientations. In fact, a contact occurring in
the position pi on the object’s surface can correspond to more
than one node in the graph, because there is a disconnection
in the angular components, as in the example in Fig. 4.

When refining the adjacency by taking into account the
orientation, the amount of connected components in the
graph can increase with respect to the ones in CG, depending
on the object’s geometry. Therefore, we define the set of
connected components in the DMG as CDMG.

C. Complexity Analysis

The complexity of the generation of the DMG can be
easily derived. Although the process in Algorithm 1 can be
optimized, we prefer this notation for readability purposes,
and we assume a Breadth-first search for the operation of
deriving the connected components.

Given |V | as the number of vertexes in G, which depends
on the chosen resolution in the segmentation of the object,
a as the number of considered angles, which is

⌈
360
as

⌉
, b as

the maximum number of edges from a node, and c as the
maximum number of angular components, the complexity is

O((max(c2b, ac))|V |), (1)

where b is usually at most 4 or 5 because of the geometric
adjacency of the supervoxels, c is 1 for most of the nodes
and it can be expected to be a small number (2 or 3) for a
few of them, only for unusual and complex shapes, and a
depends on the chosen resolution for the angles (as).

D. Graph Search

The DMG is composed of separate connected components,
in which the contact point can move. If the desired contact
on the object lies in the component CD ∈ CDMG, and this
component is different from the component CI ∈ CDMG

of the initial contact, it is not possible to achieve the
desired repositioning without releasing the contact between
the gripper and the object.

When searching for a path within a connected component,
optimal and fast strategies for graph search can be used. In
our particular implementation, we use Dijkstra’s algorithm.
Fig. 5 shows an example of two paths. These paths are found
between the same contact points, but with two different target
orientations of the gripper.

We address the problem of in-hand manipulation with a
parallel gripper, which has two contacts on the object. How-
ever, the DMG is built taking into account only one contact
point. The contact points of the two fingers on the object
are associated to the node with the closest position and with
angular components that contains the current orientation. We
assume that one finger is the principal finger, arbitrarily cho-
sen, and the other one, the secondary finger, follows it on the
opposite side in its own corresponding connected component
of the DMG. When looking for a feasible solution, both
fingers must remain in their component during the whole
motion, named Cp for the principal finger and Cs for the
secondary finger. While the principal finger moves along the
nodes in the graph, the secondary one has a more relaxed
association with them to ensure that the parallel gripper
moves properly on the object.

The graph search algorithm is executed from the initial
principal finger contact npinit to the desired one npgoal. At
each iteration, to a node npij in Cp corresponds a secondary
finger’s contact point. This point is found as the intersection
between the object and the line starting from the position of
the principal contact pi with the same direction of the line
that connects the two fingers in the previous configuration.
In fact, a motion between nodes with different positions of

Fig. 5: A path for the contact point to move the gripper from the initial
configuration (in red), to the goal configuration (in green). The contact points
are the same, but the two goals have a different gripper’s orientation. The
different angular components provide two different paths.



Fig. 6: An example of the same in-hand repositioning computed assigning
a different gripper’s finger as principal. The found paths are both valid, but
they lead to different motions of the object.

the contact point corresponds to the translation movement
primitive, and therefore the orientation of the fingers with
respect to the object remains constant. The obtained point
is associated to a node nsxy in the DMG. If nsxy is not in
Cs, or the gripper is in an invalid configuration, the distance
between the two considered principal nodes npij and nphk is
set to ∞ to ensure that this path is not chosen.

The obtained path may not be the shortest path for the
principal finger, because it depends also on the secondary
finger on the opposite side of the object. As shown in Fig. 6,
in the second image the path avoids the center of the object,
although for that contact point alone moving there would be
the optimal solution.

As final comment, we briefly discuss how to use the dis-
tance between two nodes npij and nphk during the search. This
distance can be the simple euclidean distance ‖ph−pi ‖2, or
it can be chosen according to how expensive a movement is
with the available robot. For instance, if a rotation is required
because the current angle γ of the finger is so that γ ∈ Aij

but γ /∈ Ahk, this rotational movement can be considered as
more expensive by increasing the distance.

In addition, the parallel gripper can increase or decrease
the opening between the two fingers when it is manipulating
an object whose surfaces are not parallel. This opening
is obtained from the distance between the contacts of the
principal and secondary fingers. Depending on the precision
and efficiency in actuation of the available gripper, changes
in distance between the fingers can be penalized during the
graph search, according to how preferable it is to keep a
stable fingers’ opening versus a possibly longer path.

Finally, some motion directions can be also penalized by
increasing the distance between the corresponding nodes, to
avoid undesirable behaviors in the execution, such as the
examples mentioned later in sections IV-B and IV-C.

E. In-hand Manipulation Sequence

The path obtained from the DMG is a sequence of K
nodes {n0, n1, ..., nK−1}, with n0=npinit and nK−1=npgoal.
This path must be translated into a sequence of manipulation
primitives.

Given the nodes nk=<pk, Ak> and nk+1=<pk+1, Ak+1>
in sequence in the path and the current orientation of the fin-
ger γk in the contact point of the node nk, two manipulation
primitives are needed to move the contact from nk to nk+1:

1) A rotation rk so that the next orientation γk+1=γk+rk

is so that γk+1 ∈ Ak ∩ Ak+1. This rotation can be
chosen to minimize the change, so that it is 0 when
γk ∈ Ak∩Ak+1, to get closer to the goal angle γK−1,
or to fulfill additional requirements.

2) A translation tk that slides the contact point on the
object from pk to pk+1. This translation is obtained as
tk=pk+1−pk. Therefore, from a path of K nodes, the
corresponding translations are K − 1.

The sequence of manipulation primitives is an alternation
of rotations and translations, plus a final rotation to reach the
final angle: {r0, t0, r1, t1, ..., rK−2, tK−2, rK−1}. It is pos-
sible to have several rotations with value 0, which can then
be ignored during the execution. In contrasts, the translations
are always nonzero because there is no connection between
nodes nij and nik, with the same contact point but different
angular component. Since the path is fragmented into many
segments, we unite these segments to avoid a slow execution.
For instance, two translations are joint if there is a rotation
equal to 0 in between and the change in direction of the path
on the object’s surface is negligible.

F. From DMG To Manipulability Analysis

In addition to planning dexterous manipulation, the DMG
can be used to analyze the manipulability of an object.
In particular, we focus on how much the manipulation
primitives can reposition an object inside the gripper without
the need for regrasping.

We build a manipulability matrix by computing a path
between several different poses of the gripper, distributed in
the object’s bounding box. This matrix contains 1 in the ij
position if a path exists between pose i and pose j, and 0
otherwise. The resulting matrix is symmetric and it is an
adjacency matrix. By setting the diagonal elements to 0,
loops between nodes are removed. This matrix can be seen
as an extended representation of the DMG, but it strictly
depends on the chosen parallel gripper, while in the DMG
each node is associated to a single contact point and this
abstraction is an advantage in case our method is extended
to multi-fingered hands.

This matrix can be ordered into blocks, which are a
simple tool to visualize the manipulability of the objects.
The manipulability matrix provides an overview on how easy
it is for the robot to manipulate a certain object without
the need to regrasp. In fact, if there are fewer blocks,
the likelihood of manipulating an object while maintaining
contact is higher. This matrix can also be used in future
implementations as an aid to a regrasping strategy that takes
into account both the object’s shape and the current gripper’s
configuration, because it provides information on an area
where to regrasp. Examples of manipulability matrices are
analyzed in section V-B.

IV. DUAL ARM FORMULATION

As mentioned, we use the ECTS [7] to describe the motion
of our dual arm system. The ECTS allows for a specification
of the absolute and relative velocities of the two end-effectors
and it translates them into velocities for each robot’s arm.
Additionally, the degree of coordination of each arm can be
adjusted to obtain symmetrical or asymmetrical executions.

With ẋ=(ẋ1, ẋ2)T being the vector containing the Carte-
sian velocities of the first and second end-effectors, and



ẋa=(va, ωa)
T and ẋr=(vr, ωr)

T being their absolute and
relative motions expressed as linear and angular velocity, the
relationship between these velocities is

ẋ =

[
αI6 −(1− α)I6
−βI6 αI6

]
ẋE , (2)

where ẋE=(ẋa, ẋr)
T , I6 is the 6-dimensional identity matrix,

and α and β are coordination coefficients. In particular,
β ∈ {0, 1} and α ∈ [0, 1]. With β set to 0, the motion
is uncoordinated, therefore in our case it is always set to 1,
as the two arms are manipulating the same object with the
purpose of repositioning it inside one of the two grippers. α
defines the degree of coordination. For instance, if it is set
to 0.5, the motion of the arms is symmetrical. If it is set to
0, only one arm moves and this mode can be seen equivalent
to a system of a single arm robot and an external support.

The motion of the object inside the gripper can be de-
scribed using the relative motion of the two arms ẋr. In
our experiments, we keep the absolute motion ẋa to zero,
but it can be exploited to move the arms while the robot is
manipulating the object.

In this section, we first provide an overview of the execu-
tion procedure and then we explain in detail how to obtain
the translation and rotation manipulation primitives with the
dual arm system.

A. Execution Procedure

In our dual arm system, the robot grasps the object with its
first gripper, and its second gripper helps pushing the object
to adjust its pose. The object must be moved according to the
sequence of manipulation primitives derived in section III-E.
To each translation tk and to each rotation rk correspond the
following steps executed by the robot:

1) Find contact point: In this step, the robot does not
move, but it analyzes the shape of the object. In fact, for the
second gripper to be able to push the object in the desired
pose, the pushing must begin from a proper contact point
with the object. Fig. 7 shows examples on how to find the
contact point between the object and the second gripper.

2) Approach contact point: In this step, the robot moves
its arms so that the second gripper is in contact with the
object at the chosen point.

3) Execute manipulation primitive: In this step, the robot
moves the arms so that the object’s pose inside the first
gripper changes according to the corresponding manipulation
primitive. The first gripper also enlarges and tightens the

(a) Given tk , the object is pushed
from a point pp found as the inter-
section between its surface and the
line passing through the contact point
with the direction of the translation.

(b) Given rk , pp is one of the
two intersections between a line
orthogonal to the finger, put inside
the object of a distance d, chosen
according to the direction of rk .

Fig. 7: The derivation of the contact point between the second gripper and
the object. The initial finger’s pose is red, and the desired one is green.

fingers to facilitate the object’s motion. The explanation of
the translation execution is given in section IV-B, and the
rotation execution is described in section IV-C.

4) Leave contact point: In this step, the robot moves
the arms so that the second gripper is no longer in contact
with the object. The first gripper is instead still grasping the
object, in the new pose that derived from the execution of
the manipulation primitive.

B. Translation Execution

If the manipulation primitive to be executed is translation,
then

ẋr = (v, 0)T . (3)

0 is a 3-dimensional zero vector, indicating that there is
no angular velocity because the orientation of the object
inside the gripper must remain constant. The linear velocity
v depends on the desired translational motion of the object.

Given the translation tk of the contact point on the surface
of the object, the direction of the translation of the contact
point in the robot’s base frame is t′k= bRg1 t̃k, where bRg1 is
the rotation matrix containing the orientation of the gripper
in the base reference frame and t̃k is a 3-dimensional vector
containing the 2-dimensional tk expressed in the gripper’s
reference frame. To achieve a translation of the contact
point directed as t′k, the object must move in the opposite
direction, denoted as −t̂′k. We adjust the magnitude of the
velocity m using a P controller during the motion execution,
until the fingertip reaches the desired contact point. In
conclusion, the linear velocity is v=−mt̂′k.

We assume that the friction between the object and the
second gripper is so that the latter can push the object
also along diagonal directions. However, since the DMG
is independent from the initial grasping configuration, it
contains translational motions along directions that may not
be feasible for pushing, and which instead require pulling. A
pulling motion would require the second gripper to grasp the
object, and since we do not deal with regrasping problems
in this work, we prefer to discard translational motions
that require a pulling motion at the planning stage. More
specifically, these motions are penalized in the cost of the
path during the graph search, so that a preferred solution
contains a rotation of the object, a push and a second rotation
rather than a pull.

C. Rotation Execution

If the motion to be executed is a rotation, the relative
motion of the second gripper’s contact point is along an arc
of a circle. We induce also an angular velocity so that the
second gripper follows the object during the rotation without
altering the contact surface.

Assuming the reference frame of the gripper as in Fig.8,
the velocity in the first gripper frame is
g1ẋr = (cos(θ+ φt)φ̇t, 0, − sin(θ+ φt)φ̇t, 0, φ̇t, 0)

T . (4)

θ is the initial angle of the second gripper’s contact point q
on the object with respect to the first gripper’s orientation,



Fig. 8: The gripper’s
reference frame.

Fig. 9: A rotation rk , from a finger’s initial orien-
tation (in red) to the desired one (in green).

and φt is its variation. Given the desired rotation of the
finger in contact rk, φt produces a rotation in the opposite
direction. As represented in Fig. 9, the gripper’s finger has to
rotate of rk, and therefore the point q on the object rotates
around the grasp contact point in the opposite direction.
φt evolves during time so that at the beginning it is equal
to 0 and at the end it is equal to −rk. The point q is
initially at an angle θ with respect to the gripper. r̂obj,t
is the unitary vector pointing in the direction of q during
the motion. Its evolution in the zx plane is described as
r̂obj,t=(cos(θ+φt), sin(θ+φt))

T , from which the velocity
in (4) is derived. This velocity is then transformed into the
relative velocity ẋr expressed in the global reference frame.

Similarly to the translation velocity, we adjust the magni-
tude of this rotation velocity during the execution, until the
object reaches the desired orientation. Excessive rotations
that could lead to the second gripper colliding with the
first arm should be penalized as the pull motions for the
translations.

V. EXPERIMENTS

We tested our dexterous manipulation strategy on a Bax-
ter robot. In addition, we used the DMG to evaluate the
manipulability of objects, and to analyze possible aids to
a regrasping strategy that compensates for desired configu-
rations that are not reachable by moving the contact point
along the object’s surface.

A. Robot Experiments

We used a Baxter robot to execute the dual arm strategy
defined in section IV. We used hemispherical fingertips for
better controlling the friction at the contact point when
enlarging or tightening the grasp. We detected the pose of

the object using April tags and the camera built on Baxter’s
end-effector, with a frequency of 28 fps. This visual feedback
was used to adjust the object’s motion during the execution.

As mentioned, the strategy consists of a sequence of
pushes on the object and an adaptation of the distance
between the fingers to allow the object to move. We have
kept the absolute motion ẋa to zero, leaving only the relative
motion ẋr to be executed by the two arms.

Due to the compliant nature of Baxter, the executions
of the pushing was subject to position errors. However,
the accuracy was good enough to achieve the repositioning
within a range of about 10mm and 5◦ around the desired
configuration of the gripper’s finger on the object.

We have also verified that the error was smaller when
the gripper that was grasping the object was kept fixed and
only the second gripper was moving (α=1). In the opposite
case (α=0), in which the first gripper moves against the
second one, or in blended mode (0<α<1), we noticed that
the second gripper was significantly pushed away due to
the compliance in the arm. Therefore, precise repositionings
were more difficult to achieve in this dual arm mode.
However, we highlight that the mode α=0 is a mode that can
be used to substitute the dual arm system with a single robot
arm that pushes against the environment, non-compliant,
instead of against its second gripper.

Fig. 10 shows an example of the execution of an in-
hand repositioning. The desired final configuration is shown
on the right side of the image, as well as the executed
path of the contact point on the object’s surface. The DMG
was built using a resolution of 13mm of the supervoxels,
which produced 117 segmented areas, and refined with
δ=0.07, as=5◦ and l=100mm. The P values were 0.7 for
the fingers’ distance, 0.32 for the linear velocity and 16 for
the angular velocity. The execution of this experiment and
other experiments with different objects are available in the
supplementary video.

B. Object’s Manipulability

We have used the DMG to analyze the manipulability of an
object by building its manipulability matrix. After removing
the rows and column corresponding to invalid poses, and
hence containing non useful data, the matrices were ordered

Fig. 10: The in-hand manipulation executed with Baxter. The desired motion of the contact point is shown on the right and is superimposed to the pictures
as a blue line. The execution is composed of an alternation of four rotations (of which the first two are 0) and three translations: the second gripper
approaches the object and pushes it for translating the contact points with the first gripper, then it changes the approach point and the push direction to
impose a rotation on the object, and it repeats these motions until the object reaches the desired pose.



Fig. 11: The manipulability matrices associated with the object’s surface.
The first matrix is 1332× 1332 and the second one is 1284× 1284. The
matrices are binary, and black represents 0. The colors are superimposed to
the blocks of 1 to show the different areas of gripper’s contact.

into blocks. Fig. 11 shows an example of the manipulability
matrix with two different objects. The correspondence of the
blocks is not with a connected component of the DMG,
but with an area of the object in which the gripper can
manipulate it without losing contact. For instance, the bottom
part of the second object is associated with both the red and
the blue blocks, while it corresponds to a single connected
component in the DMG. In fact, while in the DMG only one
contact point is considered, the matrix contains information
related to both of the gripper’s fingers.

The manipulability matrices also provide useful informa-
tion for future implementations of a regrasping strategy,
because they connect the desired pose to two connected com-
ponents, but they also provide an area inside the connected
component that is preferred, in case a connected component
is associated to multiple blocks, hence restricting the search
area for a grasp.

VI. CONCLUSIONS

We have introduced a novel tool for planning in-hand
manipulation that we named Dexterous Manipulation Graph.
First, we defined manipulation primitives that can be used
by the robot to move an object inside the grasp while
maintaining contact. Then, We suggested to analyze the
shape of the manipulated object to generate a graph that
describes the possible motions of the contact point between
the fingertip and the object. This graph is used to search for
sequences of manipulation primitives to reposition the object
from an initial configuration inside the gripper to a desired
one. The DMG can also be used to analyze the manipulability
of an object using its manipulability matrix. In addition,
we formulated the execution of the translation and rotation
movement primitives in a dual arm framework. However, the
same movement can be executed with a single arm and an
external contact without modifying our definitions. Finally,
we have tested our approach to in-hand manipulation using
a Baxter robot.

As future work, we plan to include the possibility to grasp
the object with the second arm of the robot and execute
manipulations that include the roto-translation primitive. This
inclusion will likely change the shape of the graph for objects
without sharp edges. Additionally, we will include manipu-
lations that require a regrasp, and we will use the DMG and
the manipulability matrix to plan where the regrasp should
be and where the second gripper should grasp so to not
hinder the repositioning inside the first gripper. Moreover,
we plan to exploit the difference in possible solutions given
the different selection of the principal finger to improve

the overall planning of the in-hand manipulation sequence.
Finally, we also want to extend the DMG to be used with
multi-fingered hands, and exploit the knowledge of contact-
based connected components in the graph and the additional
intrinsic dexterity to achieve even more dexterous in-hand
manipulations.
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