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Abstract— In this work, we address the problem of executing
in-hand manipulation based on visual input. Given an initial
grasp, the robot has to change its grasp configuration with-
out releasing the object. We propose a method for in-hand
manipulation planning and execution based on information on
the object’s shape using a dual-arm robot. From the available
information on the object, which can be a complete point
cloud but also partial data, our method plans a sequence of
rotations and translations to reconfigure the object’s pose. This
sequence is executed using non-prehensile pushes defined as
relative motions between the two robot arms.

I. INTRODUCTION

In-hand manipulation is the action of changing the pose

of an object inside the hand without releasing it. While it

is possible to achieve the desired in-hand motions using

multi-fingered hands by exploiting the several degrees of

freedom (DoF) that those end-effectors provide [1]–[3], we

focus on the subset of in-hand manipulation problems that

are executed with parallel grippers. These end-effectors have

the advantage of being more robust and reliable, as well

as being the most commonly available on the current robot

platforms, but they are limited to a one dimensional motion.

To achieve in-hand manipulation with simple grippers it

is possible to exploit the extrinsic dexterity [4] that leverages

supports external to the gripper, such as gravity or contact

surfaces. In our case, we choose to enhance the dexterity of

the gripper by exploiting the additional DoF available in a

dual-arm system: the object is adjusted inside one gripper by

contacts and pushes exerted against the other gripper.

In our work, we focus on obtaining the correct sequence

of pushes for in-hand manipulation based on the object’s

shape, so that the object is moved from an initial grasp

configuration to the desired one. The information about the

desired grasp configuration can come from grasp planners

based on affordances, such as [5]. An application example is

a robot that has to readjust the grasp on a novel object that

has just been handed over by a human, or that was blindly

picked from a bin. The grasp configuration is not proper for

the object’s use, and it must be adjusted for the robot to

fulfill the desired task. In the example shown in Fig. 1, the

robot has to adjust the current grasp on the handle of the

hammer, for future use.
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Fig. 1: Given the current grasp on the object and the desired in-hand
manipulation task, the solution is obtained by analyzing the object’s shape.
In this case, the information about the object is provided by a depth image.
The in-hand path is shown as a red line towards the desired point (in green),
and the blue lines show the finger’s orientation at each point. This path is
then executed by the dual-arm system.

We plan an in-hand path based on the current available

information on the object; while we focus on partial point

clouds obtained from depth images, the method also works

with precomputed 3D object’s shapes that represent the

whole object or a part of it. The planned in-hand path is

associated to relative motions of the two robot’s grippers

that push the object towards the desired configuration.

We exploit the redundancy of a dual-arm robot to execute

non-prehensile pushes on the object and adjust its pose inside

the gripper. It is also possible to execute these pushes by

using external contacts with surfaces or fixtures. However,

in a context in which there are no properly placed fixtures or

contact surfaces, or when the robot cannot fully perceive the

environment to determine where to push, a dual-arm system

is nonetheless able to perform the push execution.

The contribution of this work is a method for planning

and executing dual-arm in-hand manipulation using non-

prehensile pushing based only on the object’s shape. The

shape does not need to be known a priori and it does not

have to be analyzed beforehand. The proposed solution can

be used for quick corrections of the grasp, even in the

absence of full information on the object. It is also suitable

for manipulation tasks that require interactive perception.

II. RELATED WORK

Our work consists of planning and executing an in-hand

manipulation task with a parallel gripper, under the umbrella

of extrinsic dexterity. Previous works mostly focused on one

specific kind of repositioning, such as pivoting [6]–[8] or

sliding [9]. We use both of these two motion types to achieve

a broader grasp reconfiguration.

In our approach, the support external to the gripper is pro-

vided by the second arm of the robot. We describe the motion



of the object inside the gripper as a relative motion between

the two arms and we use the Extended Cooperative Task

Space (ECTS) [10] to control the robot’s joints accordingly.

While the second gripper could be exploited for regrasping,

this operation is not always necessary or feasible, and it is not

easy to plan in case of partially known objects. Therefore,

we use the second gripper for non-prehensile pushing.

Dual-arm manipulation is often used for large object

handling and not for fine manipulation. The works in [11]

and [12] change the grasps on the object to ease the dual

arm manipulation planning; however, the object is not moved

within the gripper because all the grasps are firm and the final

objective is not in-hand manipulation.

Bimanual manipulation of objects has also been used for

tactile exploration [13], but in this case the system exploits

multi-fingered hands equipped with several tactile sensors;

the scope of the work is to find suitable stable grasp poses

and not to execute an in-hand manipulation task.

The second arm used in our solution is similar to an

external pusher that provides support to the gripper to

manipulate the object. Planning in-hand manipulation with

an external pusher has been explored in [14] and [15]. The

main difference between these works and ours consists in the

modeling needs: while in these works an accurate dynamic

simulation is required, in our case we aim at achieving in-

hand manipulation from the partial knowledge of the object’s

shape and pose provided by a depth camera.

In our previous work [16] we presented a method for

planning in-hand manipulation based only on the shape of

the object. However, the full object’s shape must be known

and it must be analyzed off-line to determine the possible

motions of the fingers on its surface and generate a graph-

like structure. In contrast, in this work we focus on in-hand

manipulation given the current available information, without

the need for an off-line step to analyze the object.

III. IN-HAND MANIPULATION PLANNING

In this section we detail how the in-hand manipulation

sequence is generated from the available input data. The data

describing the object is a point cloud. This point cloud can

be the result of prior knowledge on the object, for instance

obtained from 3D reconstruction [17]–[20], or any currently

available information from the sensors. In our examples, we

focus on point clouds obtained from a depth image. When

the knowledge on the object is partial, the in-hand path could

result in an infeasible solution. This case can be addressed by

increasing the information on the object as the manipulation

task is executed; we discuss this possibility in section VI.

As such, we prefer to not use a global planning method, and

we favor an on-line approach that can be quickly modified

and adjusted as new information becomes available.

A. Assumptions

We assume that the object is symmetric in the sliding area;

i.e. if one fingertip can slide along a certain segment, the

same applies to the opposite fingertip.

From the previous assumption, it follows that the grasp

on the object is an antipodal point grasp; in fact, the

two fingertips’ contact points are antipodal points, i.e. two

points whose normals with respect to the object’s surface

are collinear and in opposite directions. Antipodal points

guarantee force closure under the condition of soft finger

contact [21]. In addition, we assume that the manipulated

object is sufficiently lightweight so that the grasp closure can

be ensured with the limited force applicable by the robot’s

gripper.

Furthermore, we assume that the object’s surface is suf-

ficiently smooth so that in-hand sliding motions can be

approximated with planar motions. The design of many

objects and tools of common use falls in these assumptions.

The obtained in-hand path represents how the gripper’s finger

can slide and rotate on the object, based on the current

configuration and on the available push directions that the

second arm can provide.

B. Planar Motion

While both the object and the grippers move in SE(3), the

in-hand manipulation inside a parallel gripper allows varia-

tions in SE(2). In fact, assuming the frame of reference on

the gripper’s fingertip, the pushing motions enable rotations

and translations on a plane, because the object’s motion is

constrained by the grasp of the parallel gripper.

In the following sections, we use both two-dimensional

and three-dimensional vectors to analyze the points in the

point cloud and the in-hand translational motion. To ease

the disambiguation between the two kinds of vector, we use

the notation v ∈ IR2 and ṽ ∈ IR3. In particular, v is the

projection of ṽ on the plane of in-hand motion. In our case,

v is expressed in the xy plane of the fingertip’s frame, which

is a plane normal to the closing direction of the fingers, and

ṽ is expressed in the global reference frame.

C. In-Hand Motions

We describe the current grasp of the object inside the

gripper as a planar configuration c=〈p, α〉, where p is the

contact point between one fingertip and the object’s surface

and α ∈ [0, 2π) is the current orientation of the finger in the

sliding plane. This configuration describes a pose defined

by one of the two gripper’s fingers. Since we use a parallel

gripper and we assume symmetry in the sliding area, the

second finger follows the motions of the first.

We define the motion of the object as a combination of

two in-hand movements:

• Rotation. The object rotates around the axis z̃ that

connects the two fingertips of the gripper. The position

of the contact point between the object and the fingertip

does not change. More specifically, a rotation moves

the grasp from a configuration c=〈p, α〉 to a new

configuration c′=〈p, α′〉.
• Translation. The object slides inside the fingers. The

position of the contact point between the object and

the fingertip follows the translation. More specifically,

it moves the grasp from c=〈p, α〉 to c′=〈p′, α〉.



Fig. 2: An example of sliding area, considering the object shown on the
right. The red line segment indicates the current grasp as the position and
orientation of the gripper’s finger. The blue area shows the portion of the
object’s surface on which the fingertip is allowed to slide.

By combining these two motions, we describe how the finger

slides and rotates on the object’s surface.

While we plan rotation and translation separately, there is

the chance that the object slightly translates during a rotation

and slightly rotates during a translation. Our control scheme

manages one motion at a time, but these side effects can be

compensated by using visual feedback after the termination

of the first execution.

D. Point Cloud Analysis

Given p̃0, the 3D point describing the initial contact

between the fingertip and the object, we extract a subset

Ps of all the points in the point cloud P ⊂ IR3 as

Ps = {p̃i ∈ P : |z̃T · (p̃i − p̃0)| < ǫ}. (1)

That is, Ps contains all the points of the point cloud that

lie, within a certain threshold ǫ, on the plane π orthogonal

to the axis z̃ between the fingers and passing through the

initial contact point p̃0. p̃0 does not have to belong to the

point cloud. This set represents the area of the object along

which the fingertip is allowed to slide. An example is shown

in Fig. 2. The threshold ǫ accounts for imperfections in the

objects and noise in the data. It can be adjusted to tolerate

small curvatures for the sliding surface and how much the

planar motion can be altered, for instance by taking into

account the possibility of opening and closing the gripper’s

fingers during the execution.

Given a desired contact point p̃d, we define a goal area

Ad as

Ad = {p̃i ∈ IR3 : ‖p̃i − p̃d‖≤ δ}, (2)

in which δ defines the tolerance in reaching the desired

position. The set Pd={p̃i ∈ P : p̃i ∈ Ad} contains the

points in the point cloud that belong to the goal area.

When the full 3D reconstruction of the object is not

available and the desired region is not currently visible, i.e.

Pd=∅, we carry out the in-hand motion planning assuming

that the desired point lies on the plane of motion, free of

obstacles. That is, it is assumed that the desired grasp lies

on the sliding plane π. Otherwise, if |Pd| > 0 and Ps∩Pd=∅,

the desired grasp on the object is assumed not reachable by

sliding or rotating along the object’s surface and regrasping

is needed; in this case, no in-hand motion is planned.

Once the region of motion is identified, given the ini-

tial configuration c0=〈p0, α0〉 and the desired configuration

cd=〈pd, αd〉, describing poses on this region, the object’s

point cloud is analyzed to generate a sequence of rotations

and translations to move the gripper’s finger from c0 to cd.

E. Pushing Direction

For a given object, some motion directions can not be

achieved using non-prehensile pushing. In fact, the available

motion directions depend on the contact between the pusher

and the object. More specifically, they can be identified by

a motion cone [22]. However, to properly describe a motion

cone detailed knowledge of the involved dynamic parameters

is required. Therefore, our approach approximates the motion

cone and limits the available motion directions based only

on the currently observable object’s shape.

We assume that a motion direction d can be achieved by

pushing the object along −d if the difference between d and

the normal n at the object’s border used for pushing, parallel

to the object’s plane of motion, is within a certain threshold

η. More specifically, assuming n⊥ as the vector orthogonal

to n, the pushing direction −d is feasible if
|n⊥· d|
‖n⊥‖‖d‖ ≤ η.

The vector n can be obtained in two ways:

• If the object’s shape is partially reconstructed and there

is an opposite surface to the desired motion direction,

the normal is simply the normal to this surface.

• If there is no available opposite surface, the normal is

estimated based on the currently visible object’s bor-

ders, which are used as an assumption for the surface’s

orientation.

By checking the availability of the pushing direction, the

solution provided by the in-hand path planning also includes

candidate push points for the bimanual pushing execution.

We distinguish between two different kinds of pushing:

translational and rotational. While the feasibility of the

pushing direction is obtained in the same manner, the pushing

contact point differs in the two cases, as well as the tolerable

mismatch between d and n, which could be higher in the

rotational case. Since we execute the in-hand manipulation

with a dual arm robot, we consider push contact points valid

only when they are sufficiently distant from the grasping

gripper, and we prefer the ones that face the second arm

because they are easier to reach.

1) Translational Pushing: The translational pushing con-

tact is obtained by intersecting the object’s border, or the

available opposite surface, with the desired translation direc-

tion along a line that contains the current fingertip contact.

Fig. 3 shows examples of valid and invalid pushing

contacts and directions. The finger, in dark gray, is in contact

with the object at the point marked by the black dot. From

this configuration, the green lines show some of the possible

translation directions d2, d4. In fact, by pushing at the points

shown by the green arrows, it is possible to slide the finger

on the object in the chosen direction thanks to the alignment

with the normal at the border n1, n3.

In contrast, the blue dotted lines show translation direc-

tions that cannot be achieved, because pushing as shown by

the blue arrows is not considered a valid push due to the

discrepancy between d1, d3 and n1, n2 in these cases.

The red arrow on the right, not associated with any line,

despite having a pushing direction that is achievable because

the normal at the border is aligned, does not show a valid



Fig. 3: Examples of valid and invalid translations for the fingertip contact
point. Examples of valid pushes are shown by green arrows, and they result
in translations along d2, d4. Blue arrows are non valid pushes, meaning
that the fingertip cannot slide along d1, d3. The small magenta cones show
the region defined by the angle η around the normal at the push point. The
admissible pushes are inside this cone, while the inadmissible are outside.
The red arrow shows a valid pushing direction, but it is not a valid push point
for obtaining a translation because it does not lie on a line that intercepts
the contact point.

Fig. 4: Examples of push points for the rotation around the contact point
shown by the orange arrow. The tolerance for alignment with the surface
normal is not as strict as for the translation: the blue arrows show valid push
points for this rotations. Notice that pushing as shown rotates the object in
the opposite direction, therefore the finger rotates on the object as desired.

push point because it does not lie along lines that intersect

the fingertip contact point. By choosing a specific push point

instead of an object’s side or face, we minimize the chance

of unintended behavior, such as rotations during translations

execution.

2) Rotational Pushing: The rotational pushing contact

is obtained according to the rotation direction (clockwise

or counter-clockwise), along a direction d′ parallel to the

current finger’s configuration.

Fig. 4 shows an example of this pushing direction. The

finger divides the object into a left and a right side. The

direction of the push is along the finger’s direction, but it

depends on the object’s side and on the rotation. In this case,

since the desired rotation, shown in orange, is clockwise, the

push is upwards if it lies on the right side and downwards if

it lies on the left side. Since there are many valid push points,

the choice is made to be the furthest away from the current

fingertip contact and the side that faces the other robot’s arm

is preferred.

The tolerance η can be increased for the rotation push, as

it is not necessary for the normal n to be strictly aligned with

d′. Similarly, the pushing direction itself is not required to

be constrained. We search for possible push points starting

from an initial candidate d′ along the finger’s direction, but

if there are no suitable push points for it, this direction will

be changed.

F. In-Hand Motion Planning

Given the desired grasp cd=〈pd, αd〉, an in-hand manip-

ulation plan is successful when the gripper’s finger reaches

the orientation αd and the fingertip contact lies within Ad.

To generate the desired in-hand motion we design a

solution that always tries to move the grasp configuration as

close as possible to the target. More specifically, it tries to

move the fingertip contact towards the goal along the object’s

surface on the fastest possible direction and it rotates the

object as early as possible to reach the desired angle. We

favor this approach over a complete path planning algorithm

due the lack of information on the object and the possibility

of gathering it during the execution.

The planning goal is to find a sequence of rotations and

translations r0, t0, r1, t1 ..., tK−1, rK that connects the

initial configuration c0 with the desired configuration cd and

that keeps the fingertip contact in the region defined by

Ps. We assume that an initial rotation is executed at the

beginning, and it is then followed by alternating translation

and rotation. However, in many cases, during long sliding

motions, consecutive translations follow the same direction

and the rotations in between are 0. Therefore, the sequence of

translations can be merged and the zero rotations discarded.

At a contact point pk, the translation direction is chosen

as the feasible one closest to d=pd−pk. The direction

d is the one that goes towards the goal the fastest. The

feasibility depends on the sliding area, on the available

pushing directions and on the possible collisions that can

arise between the contact point and the object and between

the finger’s body and the object.

In case of a collision of the contact point, the direction of

the translation is rotated until it becomes a feasible motion,

which is as close as possible to d in terms of angular distance

between vectors. Notice that a change in direction of the

translation does not impose any rotation to the object.

A rotation rk is generated to move the fingers as close

as possible to the desired final angle αd, with a tolerance

given by the angle resolution r∆. However, rotations are

also introduced in case of collisions between the finger’s

body and the object: before changing the direction of the

translation, a check on possible rotations is done to look

for collision free finger’s configurations at the given contact

point. We execute this check by iteratively increasing and

decreasing the current angle αk by a fixed amount r∆. In this

case, the rotation between the current angle αk and the new

angle αk+rk must be free of collisions in the whole circle

sector spanned by the finger during the rotation. Algorithm 1

contains this procedure.

Starting from the initial configuration c0, a sequence of

rotations and translations is produced according to these

steps:

1) move the contact point along a feasible translation,

for a distance t∆, which corresponds to the closest

admissible direction towards the goal.

2) rotate the finger as close as possible to the desired

orientation.

This process is iterated until the contact point and the

finger’s angle reach the desired configuration cd within the

desired tolerance. However, we alter this simple planning

sequence to obtain more sliding possibilities; the rotation



Algorithm 1: rotation and contact

Input : object’s point cloud P , current angle αc, desired
angle αd, angle resolution r∆, current contact point
p
1
, next contact point p

2

Output: rotation r, rotational push contact point p̃
cr

1 if p
1

is Null then
2 if αc 6= αd then
3 r ← feasible rotation closest to αd − αc (resolution

given by r∆)
4 p̃

cr
← push point for r

5 else
6 r ←0
7 p̃

cr
← Null

8 else
9 r ← feasible rotation so that the finger is not in collision

in 〈p
1
, αc + r〉 and 〈p

2
, αc + r〉

10 if r is Null then
11 return Null, Null

12 p̃
cr
← push point for r

13 return r, p̃
cr

Algorithm 2: find admissible reconfiguration

Input : object’s point cloud P , current angle αc, desired
angle αd, next angle α, angle resolution r∆, sliding
distance t∆, current point p

1
, next point p

2

Output: rotation r, rotational push contact point p̃
cr

,
translation t, translational push contact point p̃

ct

1 if the finger’s body is in collision in p
2

then
2 r, p̃

cr
← rotation and contact(P , αc, αd, r∆, p

1
, p

2
)

3 if r is Null then
4 go to 6

5 else
6 d← feasible direction so that p

1
+ t∆d is admissible

(resolution given by r∆)
7 t← t∆d
8 p̃

ct
← push point for d

9 p← p
1
+ t∆d

10 r, p̃
cr
← rotation and contact(P , α, αd, r∆, Null, Null)

11 return r, p̃
cr

, t, p̃
ct

can be affected not only by moving it towards the desired

angle, but also to ease the translation in case of possible

collisions. A translation tk is infeasible at the configuration

ck=〈pk, αk〉 if:

• The corresponding pushing direction −dk=− tk

‖tk‖
is not

achievable given the current contact point.

• The region Pk in the point cloud that is the closest to

the point pk+1=pk+tk along the direction of z̃ is so

that Pk ∩Ps=∅. In this case, the fingertip will enter in

collision with the object.

• The finger’s body at the configuration ck+1=〈pk+1, αk〉
enters in collision with the object.

In the first two cases, the translation direction will not

be used and a new one should be selected. In the third

case, instead, before proceeding with the selection of a new

translation direction, the possibility of adding a rotation

is also explored. In fact, if a rotation rk is so that the

finger is not in collision at the configurations c′k=〈pk, αk+1〉
and c′k+1=〈pk+1, αk+1〉, with αk+1=αk+rk, and the circle

Algorithm 3: in hand path

Input : object’s point cloud P , initial grasp c0, desired grasp
cd, sliding distance t∆, angle resolution r∆,
maximum number of iterations max it

Output: sequence of translations T, sequence of rotations R,
set of translational push points Pct, set of rotational
push points Pcr

1 Ps ← from (1)
2 Ad ← from (2)
3 Pd ← Ad ∩ P
4 if Pd ∩ Ps = ∅ ∧ Pd 6= ∅ then
5 return Null

6 p
c
, p← p

0

7 T, R, Pct,Pcr ← [ ]
8 r0, p̃0

cr
← rotation and contact(P , α0, αd, r∆, Null, Null)

9 R.insert(r0)

10 Pcr .insert(p̃0

ct
)

11 αc, α← α0 + r0

12 k ←1
13 while (p̃ /∈ Ad ∨ α 6= αd) ∧ k < max it do

14 dk−1 ← feasible direction closest to p
c
− p

d
(resolution

given by r∆)
15 p← p

c
+ t∆dk−1

16 if p is admissible then

17 tk−1 ← t∆dk−1

18 p̃k−1

ct
← push point for dk−1

19 rk, p̃k

cr
← rotation and contact(P , α, αd, r∆, Null,

Null)
20 else

21 rk, p̃k

cr
, tk−1, p̃k−1

ct
←

find admissible reconfiguration(P , αc, αd, α, r∆,
t∆, p

c
, p)

22 T.insert(tk−1)

23 Pct.insert(p̃k−1

ct
)

24 R.insert(rk)

25 Pcr .insert(p̃k

cr
)

26 p
c
← p

27 αc ← α
28 α← αc + rk

29 k+=1

30 if k ≥max it then
31 return Null

32 return T, R, Pct, Pcr

sector spanned by the finger in pk between αk and αk+1

is free of collisions, the translation can be executed. This

reconfiguration of the finger is described in Algorithm 2.

The process of obtaining an in-hand path is summarized

in Algorithm 3 and the output solution is described in detail

in the following section.

G. In-Hand Manipulation Solution

Given the initial grasp configuration c0 and the desired

one cd, the in-hand manipulation solution is composed of:

• A sequence of K−1 translations t0, ..., tK−1 so that

pd−p0=
∑K−1

k=0
tk. That is, by applying this sequence

of translations the contact point on the object will be

moved from p0 to pd.

• A sequence of K rotations r0, ..., rK so that

αd−α0=
∑K

k=0
rk. Each rotation must be executed at

every new contact point; more specifically, the rotation



rk is executed when the fingertips are at the contact

point pk=pk−1 + tk−1.

• A sequence of K−1 contact points p̃
0
ct, ..., p̃

K−1
ct on

the object for pushing to obtain a translational motion.

These contact points are so that the expected outcome

of executing a pushing action is the desired translation.

• A sequence of K contact points p̃
0
cr, ..., p̃

K
cr on the

object for pushing to obtain a rotational motion. When

the rotation rk is 0, the corresponding contact point is

set to a null value, because this rotation does not require

execution.

The overall plan contains a sequence of N≤2K−1 pushes

for the robot to execute. The total number of pushes can dif-

fer from the length of the translation and rotation sequences

because, as mentioned in section III-F, some consecutive

translations can be obtained with a single push, and rotations

of 0 need no execution.

Since the pushing contact points are estimated from a

partial reconstruction of the object, their location may not

be always the real contact that the robot will obtain when

approaching the object. The approach to this situation is

described in section IV-B.

IV. DUAL ARM MANIPULATION STRATEGY

Similarly to our previous work [16], we use a dual arm

robot to execute the planned in-hand manipulation. One

gripper is used to hold the object and the other one is used

as a non-prehensile pusher.

A. Relative Arm Motions

The desired motion of the object inside the gripper is used

to describe the desired relative motion between the two robot

arms. These motions are expressed assuming the xy plane as

the plane of motion in the grasping gripper’s frame.

Given a desired translation t of the object, which is

opposite to the desired translation of the fingertip, the relative

motion of the two grippers is described by the Cartesian

velocity and angular velocity, assuming Euler angles repre-

sentation
g ẋr = (vtt̂x, vtt̂y, 0, 0, 0, 0)

T , (3)

where vt is the desired magnitude and t̂ = (t̂x, t̂y)
T is the

planar direction of the translation with unitary norm.

Likewise, given a desired rotation r of the object, we

describe the relative motion of the grippers in the grasping

gripper frame as

g ẋr = (−vr sin(φ+φr)φ̇r, vr cos(φ+φr)φ̇r, 0, 0, 0, φ̇r)
T ,

(4)

where vr is the desired magnitude, φ is the initial angle

between the grippers at the pushing contact point and φ̇r is

its variation. Given Ts the time in which the rotation starts

and Te the time in which it ends, the variation of the angle

is so that φr(Ts) = 0 and φr(Te) = r.

The relative velocity g ẋr is then expressed in the robot’s

base frame as ẋr and it is converted into the robot’s joint

velocities q̇ by the ECTS framework [10] using the relation

J q̇ =

[

I6 −(1− a)I6
I6 aI6

] [

ẋa
ẋr

]

, (5)

where J is the Jacobian of the robot, which includes both

arms, I6 is the 6-dimensional identity matrix, ẋa is an

absolute velocity that can be imposed without affecting ẋr
and a ∈ [0, 1] is the parameter that manages the degree of

coordination between the arms.

B. Robot’s Motion Sequence

In order to execute the planned in-hand manipulation, the

robot follows these steps during the sequence of rotations

and translations:

1) Move to the approach pose. This approach pose is so

that the gripper that will be used for pushing is close

enough to the object, but not yet in contact.

2) Approach the contact point. The gripper is moved

towards the contact point with the object. Since oc-

clusions or missing parts of the object in the point

cloud can lead to a wrong estimate of the contact point,

the gripper moves slowly and stops if contact with the

object is reached earlier than expected.

3) Push. The two arms move so that the relative motion

between the two grippers pushes the object in the

desired direction (rotation or translation). The grasp

on the object is kept loose to enable in-hand sliding

when executing a translational motion.

4) Move back. The gripper used for pushing is moved

away from the object. If the in-hand path is composed

by more translations and more rotations, each of them

is executed in sequence starting again from point 1.

At the end of one push execution, to correct for possible

mismatches between the desired and the executed in-hand

motion, it is possible to exploit visual feedback and plan for

corrections. For instance, given a sequence of N pushes, the

partial result of n≤N pushes can be checked and the in-

hand motion plan updated if the mismatch with the desired

outcome is found to be significant.

V. EXPERIMENTS

We used the proposed method to execute in-hand manipu-

lation tasks with an ABB Yumi robot. This robot, including

the grippers, has a load capacity of 250 grams and a

maximum gripping force of 20 Newtons. We printed slightly

deformable hemispherical fingertips for Yumi’s fingers; the

deformation allowed the grasped force to be adjusted by

moving the fingers, but the resulting contact area was still

sufficiently small to ensure that the contact between the

fingertips and the object could be approximated with a

single point. The depth image was obtained from a Kinect

v2 mounted on top of the robot; the Kinect’s pose was

calibrated with respect to the robot’s base frame. To remove

the robot’s shape from the depth image, we used the package

realtime urdf filter [23].

During our experiments, we set ẋa to the zero vector. We

kept the grasping gripper fixed and only the pusher gripper

was being moved, which corresponds to a choice of a=1.



(a) Move to the approach pose. (b) Approach the contact point. (c) Push. (d) Move back.

Fig. 5: The in-hand manipulation execution with Yumi, following the steps defined in section IV-B. The second gripper, on the right, keeps its fingers
closed. The different color of the fingers is only due to the different color in the 3D printer plastic used.

Fig. 6: The initial grasp
configuration of Yumi hold-
ing the hammer. The desired
grasp is shown in green.

Fig. 7: The proposed in-hand path. In this
case, only one push direction, labeled 1,
is necessary to achieve the desired in-hand
manipulation task.

Fig. 8: The initial grasp
configuration of Yumi hold-
ing the glue. The desired
grasp is shown in green.

Fig. 9: The proposed in-hand path. Since a
direct pushing from initial to goal contact
point is not considered valid, the in-hand
path uses two separate pushing directions.

Since this behavior depends only on the chosen parameters

in the ECTS framework, it can be modified by changing the

degree of coordination between the two arms. For instance,

with a=0 only the grasping gripper would move. This

case, with the pusher kept fixed, is equivalent to a single-

arm system pushing against an external contact. Therefore,

an external contact can be modeled in our framework by

exploiting the possibility of changing the parameter a.

We used everyday objects to test the generation of the

in-hand path with irregular shapes. We used the following

quantities in our procedure for obtaining the in-hand path:

ǫ=0.008, δ=0.02, η=0.06, r∆=0.17 radians, t∆=0.01 m.

The initial contact p̃0 was derived from forward kinematics.

The goal configuration was set as relative pose w.r.t. the

initial grasp pose, and Ad was derived around the resulting

p̃d.

Fig. 6 shows an example of desired in-hand manipulation

task: the robot is grasping a hammer, and it has to adjust the

grasp on the handle for a proper use. The desired grasp is

shown in green. The marker on the table is used to check

the calibration of the camera with respect to the robot when

the system is turned on. Fig. 7 shows the proposed solution

Fig. 10: The initial grasp configuration
of Yumi holding the plug box, and the
desired configuration, shown in green.

Fig. 11: The proposed in-
hand path for the plug box
object, with three pushes.

Fig. 12: The initial grasp
configuration of Yumi hold-
ing the spatula. The desired
grasp is shown in green, and
it involves both a rotation
and a translation.

Fig. 13: The proposed in-hand path. The
initial grasp pose is shown in yellow. Two
push points are identified, one for rotation
and one for translation in red. The finger is
immediately rotated to the desired angle,
and then translated.

obtained from analyzing the depth image. The translation

of the fingertip on the object is shown in red, and the blue

lines show the direction of the gripper’s fingers along the

path. This desired motion is executed with the help of the

second robot’s gripper that pushes the object, as shown in

Fig. 5.

Figs. 8 and 9 show an example in which the translation

from the initial contact point to the desired one is not

achievable with a single push. In fact, the motion direction

from the initial contact to the desired one is not considered

valid due to the shape of the bottle of glue. Therefore, the

suggested in-hand path moves the contact point as close

as possible to the desired position, while following motion

directions that can be obtained with pushes on the object’s

side. The first push slides the fingertip towards left. Only

after the first push it is possible to execute a second push

towards the goal.



Similarly, Figs. 10 and 11 show the in-hand manipulation

solution to modify the grasp on a plug package. In this case,

the proposed solution includes three different push points,

although two of them are very close to each other in location

and also in the push direction.

Figs. 12 and 13 show an example of in-hand manipulation

task that requires both translation and rotation. The proposed

solution rotates the finger immediately to the desired orienta-

tion, since it is achievable at the initial contact point, using a

first push. Then, it translates the fingertip towards the desired

position with the new finger’s orientation with a second push.

During the dual-arm in-hand manipulation execution, we

found that the main challenge was in accurately pushing

an object after a large rotation or translation, such as the

example in Fig. 13. In this case, since we noticed that the

errors between two consecutive pushes was negligible, the in-

hand path was not updated during the execution. However,

since the pushing points are estimated on the object in the

initial frame of reference, small mismatches would prevent

the gripper to reach perfectly the desired push point on

the object after the execution of a few pushes. Therefore,

despite the final error being negligible, it is preferable to

keep updating the in-hand path after a few pushes to obtain

a smooth execution.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a method to achieve bimanual in-hand ma-

nipulation using the currently available information on the

object’s shape. Our method provides a sequence of pushes

that move the object inside the gripper towards the desired

configuration, ans it exploits a dual-arm robot to execute

these pushes.

To obtain in-hand manipulation with more general objects,

and also under more uncertainty in the object’s shape, we

plan to extend this work using an interactive perception

approach: the object information is increased at the same

time as the object is manipulated. This addition will also

ease the correction of the in-hand motion plan during the

execution of several subsequent pushes.

Moreover, due to the rich contact interaction, we plan to

integrate tactile sensing in the gripper to enhance the control

of the in-hand motion execution; this addition also allows

us to explore solutions to merge visual and tactile inputs

to obtain a better object model and manipulation. More

specifically, by having an estimate of the involved forces,

apart from achieving better grips at the contact point during

sliding motions, we can exploit the ECTS absolute motion to

move the robot’s arms so that the object is kept stable while

the pushes are still executed to obtain the desired in-hand

motion.
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