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Abstract— Dexterous in-hand manipulation of objects bene-
fits from the ability of a robot system to generate precision
grasps. In this paper, we propose a concept of Fingertip Space
and its use for precision grasp synthesis. Fingertip Space is a
representation that takes into account both the local geometry
of object surface as well as the fingertip geometry. As such,
it is directly applicable to the object point cloud data and
it establishes a basis for the grasp search space. We propose
a model for a hierarchical encoding of the Fingertip Space
that enables multilevel refinement for efficient grasp synthesis.
The proposed method works at the grasp contact level while
not neglecting object shape nor hand kinematics. Experimental
evaluation is performed for the Barrett hand considering also
noisy and incomplete point cloud data.

I. INTRODUCTION AND CONTRIBUTIONS

Research in robotic grasping ranges from the sensory
perception problem [1]–[3] to task level grasp planning [4].
For applications such as dexterous in-hand manipulation,
precision grasping is a necessary requirement [5]–[9]. The
synthesis of precision grasps has been in particular addressed
in [10]–[14] but in a rather limited manner. In this paper, we
address the problem of generating precision grasps on objects
of complex shapes and propose the following:
• A concept of Fingertip Space – an integrated represen-

tation of object/fingertip contacts space that takes into
consideration both local object geometry and fingertip
shape. It directly operates on the object point cloud and
establishes a basis for the grasp search space.

• A hierarchy of the Fingertip Space for multilevel re-
finement of grasps allowing for an efficient search of
stable grasps.

Our work is motivated by the fact that most of the
contemporary object representation approaches concentrate
on the global rather than local surface properties and are
therefore not suitable for generating precision grasps. Exam-
ples include Reeb graph [15], Medial Axis [16], topological
features [17], primitive shapes [3], [18] and approximated
parametrized volumes [19]–[21]. Inspired by [22], which
has proven that nearby grasps with certain bounded contact
differences are also bounded in grasp quality, it enables us to
consider Fingertip Unit, which preserves surface local infor-
mation, as the basis of Fingertip Space. On the other hand,
hierarchical representation of the Fingertip Space provides a
multi-resolution global view of the target object to facilitate
the grasp planning in an efficient way. In comparison with
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Fig. 1. System pipeline: Given an object point cloud and a robotic hand as
input, our system (A) extracts a fingertip space directly from the object point
cloud and builds a hierarchical representation of it. (B) By incorporating
the fingertip space hierarchy and a hand reachability measure, the multilevel
refinement procedure searches for a feasible combination of contacts with an
initial hand configuration. (C) In the end, the synthesized grasp is realized by
local contact positions optimization with respect to the synthesized contacts.

the widely used sampling based precision grasp planners
[11], [23], [24], our representation makes the grasp planning
more reliable on complex shapes. Moreover, reachability
is an important component ensuring that the synthesized
grasp is applicable [25], [26]. By sampling and encoding
feasible hand configurations, we approximate the reachability
manifold non-parametrically to produce reachable grasps.
Finally, the execution of the synthesized grasp is computed
similarly to [27].

The system pipeline is depicted in Fig. 1: we assume that
the friction coefficients are known and that the center of mass
of the object is the centroid of its point cloud. The rest of
this paper is organized as follows: In Sec. II, we formulate
the problem of precision grasp synthesis in the context of our
system. In Sec. III, we introduce the extraction of Fingertip
Space and its hierarchy, which is shown as block (A) in
Fig. 1. Multilevel refinement of grasps, shown as block (B),
is described in Sec. IV along with Stochastic Hill Climbing.
In Sec. V, we describe details of our system implementation
and grasp execution (Block (C)) and present the experimental
evaluation. We conclude the work together and introduce
ideas for the future work in Sec. VI.
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Fig. 2. Formation of the fingertip hierarchy exemplified for four levels. Left: An AHC clustering tree is used to retrieve a partitioning of
the fingertip space into |Φ|, 10, 3, and 1 cells. For each cell a circle symbolizes the representative fingertip unit. Right: The representative
units are used as parents in a DAG. Edges to siblings (in red) and to cousins (in blue) are only shown for the fingertip unit φ1 = φ0,1.

II. PROBLEM FORMULATION AND NOTATION

We begin by presenting the notation in the table below
and then continue with the formalization of the problem.
ng Number of fingers of a robot hand
L Set of all contact locations
g =
(Cg, Jointg,Poseg)

Fingertip grasp with contacts Cg ,
joint values Jointg and hand pose
Poseg

Φ = {φi}i Fingertip Space of fingertip units φi
dΦ : Φ× Φ→ R Distance measure on fingertip units

Φ̄ = Φ∪̇{φi,j}i,j
Fingertip Space with additional rep-
resentative parents φi,j

GΦ Fingertip Hierarchy graph
(GΦ)i ith hierarchy level induced by GΦ

S Fingertip grasp solution space
Si ith hierarchy level solution space
Q : Cg → R Grasp quality function
R : Cg → R+ Reachability function
P = {(pi, ni)}i Point cloud with unit length normals
Nr
pi Point neighborhood within radius r

Hzi
k ⊆ Φ

Cell k of a zi-element partitioning
of Φ

M̂ = {mĝ}ĝ
Sampled reachability manifold of
sampled grasps ĝ

For synthesizing precision grasps, which we refer to as
fingertip grasps in this work, we next introduce how to
construct a representation that hierarchically integrates global
and local features of the object and fingertips based on the
Fingertip Space. Starting from the top level of the hierarchy,
our system starts from an initial grasping pose and then
optimizes the contacts through the hierarchy in a coarse-to-
fine manner to finally produce a stable and reachable fingertip
grasp.

A. Fingertip Grasps

We consider fingertip grasps for a hand with ng fingers,
formalized as the tuple g = (Cg, Jointg,Poseg). We refer to
contacts between the robot fingertips and the object as Cg =

{ci}
ng

i=1, the values for the end effector joints as Jointg , and
the position and orientation of the hand as Poseg . A fingertip
grasp provides one individual contact, ci, for each fingertip
which means that for each finger there exists one location
li ∈ L on the object that is in contact with the fingertip. If
no value for Jointg exists ensuring that the fingertips can
exert force onto the object via the individual contacts, Cg is
considered not reachable.

B. Fingertip Space

The set of potential contact locations, L, is large but many
locations are not viable due to the local surface geometry. To
keep grasp synthesis tractable, we propose a finite discrete
set of locations on the object, Φ = {φi}i that consists of
only viable locations and denote it as Fingertip Space. The
elements, φi of this space are named Fingertip Units. Thus,
viable grasp locations take into account local object surface
and fingertip geometry. Sec. III provides more details on this.

Provided a similarity measure for fingertip units, it is
possible to assign structure to the space Φ ⊂ Φ̄ in form
of a directed acyclic graph GΦ =

(
Φ̄, EΦ̄

)
. We define GΦ

such that similar fingertip units are pairwise connected by
edges and introduce new parent units as representatives of all
their descendants in Φ. The set Φ̄ = Φ∪̇

{
φi,j
}
i,j

consists of
fingertip units and introduced ancestor units. The symbol φi,j
with i > 0 denotes the jth parent unit in the ith level of the
hierarchy, representing all fingertip units that are commonly
represented by its children in the (i−1)th level. As shown in
Fig. 2 on the right, the resulting hierarchy of fingertip space
has a single root and similar fingertip units are connected. In
the graph, we refer to members of Φ as elements φ0,j and
denote with (GΦ)i =

⋃
j φi,j the ith hierarchy level induced

by GΦ, e.g. especially we have (GΦ)0 = Φ. Connected nodes
from the same level are neighbors, and connecting pairs of
parent units can be exploited (see Sec. III-B).

The graph GΦ and the induced hierarchy levels (GΦ)i
form our object representation. For fingertip grasp synthesis,
the above definitions efficiently provide relevant information
by adding an explicit similarity-based structure to the fin-
gertip units space: i) Similar units are directly connected.



ii) Dissimilar units are found by considering the units rep-
resented by dissimilar distant ancestors. iii) An increasingly
coarser representation is found by considering the members
or levels further up in the hierarchy. iv) Similar fingertip units
are collected under a common parent.

C. Fingertip Grasp Selection by Optimization

To synthesize a feasible fingertip grasp on an object, it
is necessary to select locations from L that afford stable
contacts and ensure reachability. We first search for stable
and reachable contacts and after that check if there are
solutions for Jointg and Poseg that realize the grasp. By
approximating the set of all possible contacts with Φ as
described in Sec. II-B, we can formalize the contacts as Cg =(
φ1, φ2, . . . , φng

)
∈ S. Thereby, we denote S =

∏ng

k=1 Φk as
the solution space consisting of fingertip spaces of different
robot fingers Φk. All surface locations that do not support
the placement of a specific fingertip are disregarded.

Given a measure of grasp quality in terms of fingertip units
Q
(
Cg
)
∈ R and a measure of reachability, R

(
Cg
)
∈ R+ we

can formulate an optimization objective in terms of solution
space elements as θ

(
Cg
)

= Q(Cg) + αR(Cg). Here, we
assumed perfect reachability for R(Cg) = 0 and set 0 >
α ∈ R. The optimization problem is then given as

C∗g = argmax
Cp∈S

θ
(
Cg
)

(1)

Concretely, we do not solve Eq. 1 directly but formulate
a hierarchy of increasingly approximated problem instances
as explained Sec. IV-C. Grasp synthesis is finalized in
continuous coordinates by inverse kinematics for the selected
contacts C∗g ∈ S as described in Sec. IV-D. If the resulting
grasp is obstructed or not reachable, we start a new search
with a different initialization.

III. FINGERTIP SPACE REPRESENTATION

In this section we explain fingertip unit extraction from
arbitrary point clouds with normals using a simple finger
model. We first provide a definition of fingertip units in terms
of input data and elaborate on the fingertip hierarchy which
is used in Sec. IV-C.

A. Extraction of Fingertip Units

In Sec. II-B we only state a qualitative definition of
fingertip units as locations on the object that allows the
placement of a fingertip. Observing an arbitrary point cloud
P =

{
(pi, ni)

}
i

with normal vector estimates, we need to
extract a finite set of such locations by investigating P while
taking a finger model into account. For the purpose of this
work, we focus on Barrett hand and consider contacts where
the inside of the distal links rests on the object surface. The
fingertip model describes a flat circular region located at the
center of the distal link’s inner surface and has radius r, as
shown in Fig. 3.

For a point pi to support the placement of the fingertip
orthogonal to its normal ni, all neighboring points within
radius r need to support the fingertip as well. This can be
formulated as a limit criterion on variance of point positions

Fig. 3. From left to right: Point cloud, fingertip space (in blue),
and rejected points (in red). Partitioning of similar fingertip unites
into 20 cells. Magnified: Red marks points rejected due to variance
criterion. Comparing to finger size, it is obvious that the red
positions cannot stabilize contacts.

and normals of the point neighborhood, Nr
pi = {(pj , nj) ∈

P |
∥∥pi − pj∥∥ < r}, and used to reject unfit points. Fingertip

space and units are now defined in terms of the following
filter:

Φ =

{
(pi, ni) ∈ P | Var

(
Nr
pi

)
< λ

}
(2)

A fingertip unit is thus a position and a normal, φ = (p, n),
where the neighborhood Nr

p satisfies the statistical variance
criterion Var.

B. Hierarchy of Fingertip Space

In Sec. II-B we have augmented the fingertip space with a
similarity-based graph GΦ and the hierarchy levels (GΦ)i it
induces. To compute a GΦ, we employ agglomerative cluster
analysis where each fingertip unit initially forms a singleton
cluster. Agglomerative Hierarchical Clustering (AHC) of the
set Φ with the distance measure dΦ is a bottom up procedure
that results in a clustering tree by iteratively merging the two
most similar clusters. This dendrogram can be accessed to
obtain a partitioning of Φ into z ∈ N clusters or cells, e.g.
Φ = Hz

1 ∪̇Hz
2 ∪̇ . . . ∪̇Hz

z . For a partitioning of z′ > z cells
each of the cells Hz′

i is strictly contained in exactly one of
the cells Hz

j .
We exploit this property to construct the hierarchy in

GΦ by computing a sequence of l partitions with |Φ| =
z0 > z1 > · · · > zl = 1 number of cells. For each cell
Hzi
j ⊆ Φ with i > 0, we create a representative fingertip

unit φi,j ∈ Φ̄ from the median position and the mean
normal of all contained fingertips units. Parent-child edges
are introduced for each two fingertips units φi,j and φi−1,k

with i > 0 if the child’s cell is contained in the parent’s cell.

∀Hzi−1

k ⊆ Hzi
j : (φi,j , φi−1,k) ∈ EΦ̄ (3)

Additionally we connect all siblings nodes and introduce
edges to all nodes who’s parents are siblings. This process
is exemplified in Fig. 2.

Concretely, we are interested in grasp similarity for search
and require similar fingertip units to be grouped together. The



admittedly crude fingertip distance measure of Eq. 4 provides
plausible results in terms of positions and normals.

dΦ(φi, φj) =
∥∥(pi − pj) + η(ni − nj)

∥∥ (4)

The parameter η ∈ R+ balances position and normal. Larger
η induces more parallel or flat geometry and small η results
in compactly shaped cells but allows more normal vector
variance. Furthermore, we need to specify the number of
levels l and the number of nodes per level zi in order to
get cutoff values from AHC. For simplicity, we base the
number of nodes per level on an incrementation ration and
ml−1. Note that ml = 1 and m0 = |Φ|. Fig. 3 shows 20
cells of different size with η = 3.

IV. GRASP SYNTHESIS

In Sec. II-C we have stated the discrete version of our
grasp synthesis as a combinatorial optimization problem.
This section serves to describe our choice of reachability
measure R and grasp quality function Q for Eq. 1. We
also describe the optimization procedure using the multilevel
refinement metaheuristic.

A. Grasp Stability Metric

All functions in Eq. 1 are defined on sets of fingertip units
φi = (pi, ni). It is therefore convenient to focus on quality
measures for point contacts as many approaches to robotic
grasping are based on force analysis and the concept of force-
closure [28], [29]. There, the forces exerted by the robot and
friction of the surfaces are considered. For Q, we choose to
evaluate the force-closure property of a grasp with the L1

grasp quality measure Qµ reported in [11] that employs the
Coulomb friction model. The grasp quality Q = Qµ is a
function of all contact positions and normals, the center of
mass of the object and the friction coefficient µ ∈ R+. We
can thus directly refer to the fingertip units for point contacts
pi ∈ R3 and inward-pointing unit surface normals ni ∈ R3.
A grasp is force-closed if Qµ is larger than zero.

B. Reachability Measure

For the optimization objective in Eq. 1 we require a non-
binary reachability measure R of a set of fingertip units that
relates to values for Jointg and Poseg . However, computing
an approximate inverse kinematic solution and measuring the
residual error in each optimization step is computationally
infeasible. Instead, we consider an approximation of the
fingertip reachability manifold M̂ and assume a free-floating
hand model. Feasible hand configurations are generated by
rejection sampling and their fingertip positions and normals
are recorded in a affine invariant encoding. To this end,
we retain a vector, mĝ , of pairwise fingertip distances and
normal differences from a sampled grasp ĝ and keep the
associated Joint ĝ values. For a grasp hypothesis Cg we can
calculate the encoding mg and access the nearest neighbor
in encoding space mĝ ∈ M̂. If the manifold is sampled
sufficiently, the differences between mg and mĝ can be
consider as the reachability residual

R(Cg) =
∥∥mg −mĝ

∥∥ (5)

This reachability measure relies on the distances in an
encoding space and we are aware that better techniques
exists, e.g., density estimation as in [30] that takes into
account also object-level impedance control. However, our
R is used in a heuristic way to reduce the searched space for
Eq. 1 and to initialize hand configurations Jointg := Joint ĝ
and has served sufficiently for this purposes.

C. Multilevel Refinement Optimization

As in our previous work [31], we apply the multilevel
refinement metaheuristic [32] for a hierarchy of combi-
natorial optimization problems. The fingertip space object
representation defined in Sec. II-B offers a multiresolution
view of the object and can be exploited for refinement search.
We refer to the fingertip hierarchy levels (GΦ)i to form
increasingly approximated instances of the solution space.
This is achieved by defining Si =

∏ng

k=1

(
GΦk

)
i

as the
solution space on the ith refinement level. On each level
i, a solution Cig is initialized by extending the solution of
the previous level i + 1 and optimizing it, resulting with a
solution C∗g = C0

g in the search space S0 = S.
In this context the individual optimization problems are

usually optimized using local optimization methods for con-
vex problems [33]. As argued in our previous work, [31]
we cannot expect convex objective manifolds for complex
objects. Furthermore, the result of hill climbing techniques
is heavily dependent on initialization in non-convex solution
spaces. Different algorithms [34], [35] have been proposed
to escape local minima. In this work, we adopt stochastic
hill climbing [36].

In this algorithm, the objective function is not directly used
to improve the current solution. Instead, the change between
two solutions Cg and Cg′ is conditioned on the probability
stated in Eq. (6).

Pr(Cg, Cg′) =

(
1 + exp

θ(Cg)− θ(Cg′)
ζ

)−1

(6)

The search randomness is determined by ζ. Large values
make the steps completely random, whereas the algorithm
degenerates to hill climbing when ζ is very small.

Our basic optimization procedure is shown in Alg. 1.
The function rand(0, 1) produces uniformly distributed real
numbers between 0 and 1. Children and neighbors of grasps
are created from the respective children and neighbors of
the constituting fingertip units in the graph GΦ as defined in
Sec.II-B.

D. Grasp Realization

The optimization procedure described in Sec. IV-C results
in a grasp comprised of discrete fingertip units C∗g . For this
grasp, the sampling-based reachability measure from Sec. IV-
B provides the joint configuration Joint ĝ of the closest
recorded grasp ĝ in encoding space. The optimization proce-
dure described below employs a continuous optimization for
Jointg and Poseg in terms of C∗g to close the gap between
discretization, sampling and applicable continuous solutions.
This is achieved by first approximately aligning the hand to



Algorithm 1 Multilevel refinement with stochastic hill
climbing for grasp synthesis
Input: ζ, maxIter, GΦ, θ
Output: grasp g

1: for i = l − 1 to 0 do
2: if i = l − 1 then . Initialization
3: Cig ← random from Si
4: else . Extension
5: Cig = argmax

Cgchild of Ci+1
g

θ(Cg)

6: end if
7: for 1 to maxIter do . Refinement
8: Cg ← some neighbor of Cig ∈ Si
9: if Pr(Cig, Cg) ≥ rand(0, 1) then

10: Cig ← Cg
11: end if
12: end for
13: end for

the grasping pose with an affine transform between C∗g and
fingertips of ĝ, and then locally optimizing simulated contact
positions.

The initial affine transform can be found by minimizing
the Euclidean error for the known correspondences between
C∗g and the fingertips of ĝ. An example of initial hand
alignment is shown in Fig. 4. As can be seen in Fig. 4, not all
fingers have an initial single surface contact. For this reason,
we first open the colliding fingers using proportional joint
value increments and then close all fingers until contact to
get simulated contact positions C+

g . We then turn to gradient
decent to minimize the error between the positions of C+

g

and C∗g for which we compute the gradient numerically.

Fig. 4. An example of initial alignment and grasp realization. Left to
right: Marker positions represent C∗

g . The initial joint values for the grasp
from M̂. Hand alignment by affine transform. Final grasp after contact
optimization.

V. EXPERIMENTAL EVALUATION

In this section, we first provide implementation details and
then present the results of evaluation. The evaluations have
been conducted in OpenRave [24] on six objects : Stanford
Bunny [37], Plane [38] and Waschmittel [39], as well as Cup,
Spoon and Milk Box scanned by ourself.

A. Implementation Details

As described in Sec. II, Fingertip Units are locations on
the object surface where fingertip contacts are viable and
the Fingertip Space is a finite set of Fingertip Units. If
two contacts have similar locations and orientations, they

would have similar contributions to the grasp stability [22].
Therefore, prior to fingertip space extraction, we uniformly
subsampled the object point cloud to produce fingertip unit
candidates. Concretely, the subsampling was done in the
scale of half of the fingertip unit size on the point cloud.

For the reachability measure R(Cg) in the objective
function θ(Cg), a set of feasible grasps were sampled and
encoded. For the sake of efficiency, we saved all the codes in
a kd-tree and consider the Euclidean distance between codes
as the reachability residual.

After Alg. 1 has synthesized a grasp hypothesis, we
discard the hypothesis and restart the algorithm if: a) grasp
hypothesis is unstable, or b) the reachability residual is too
large or c) it is not collision-free. The collision is checked
by firstly aligning the configured robot hand to the grasping
pose by the affine transform described in Sec. IV, and then
in the simulation check whether the hand has collisions at
positions other than the fingertips.

In all the experiments shown below, we use l = 4 layers,
ml−1 = 20 and η = 1 for constructing the hierarchy of the
fingertip space. We set α = 0.4 to weight between Q(Cg)
and R(Cg) in θ(Cg), and set maxIter = 100 for grasp
refinement.

B. Fingertip Space Extraction and System Evaluation

Different definitions of fingertip units result in different
fingertip spaces. As described in Sec. III, a fingertip unit
in this work is defined as a circular area at the center of
the distal link and has radius r. In this section, we show two
different definitions of fingertip units of the Barrett hand and
their corresponding fingertip spaces, and then we evaluate the
performance of the system using these two fingertip spaces
respectively.

In Fig. 5, the fingertip unit is located at the center of the
distal link in both rows expressing the representative position
of a fingertip. In the upper row, the radius of the circular
area is the distance between the center and the long edge of
the distal link, denoted as r1, whereas in the lower row, the
radius is the distance between the center and the short edge
of the distal link, denoted as r2. As we can see from their
corresponding fingertip space, r2 is indeed a more restricted
condition that requires a larger area on the object to fit the
fingertip, and in the meanwhile it results in a much sparser
fingertip space.

Fig. 5. Fingertip Space with different fingertip unit sizes.

Fig. 6 records the statistics of our system evaluation.
Recall that the initialization of the system is random in this
work and there is also randomness in the stochastic hill



climbing procedure, the results generated by system can be
different between each single run of the system. Therefore,
we ran it 100 times on each of the six test objects using
fingertip unit sizes of both r1 and r2 and investigate the
averaged performance. We can see that the result for the
plane model is much worse than others. This is due to the
fact that the plane has many parts that are highly concave and
that the Barrett hand is coupled with only 4 DoFs, the grasp
realization is therefore much more difficult. For the same
reason, it is much easier to expect collisions between the
robot hand and the plane surface and more search iterations
are therefore required. However, it is intuitive that if a more
dexterous hand is employed, it is easier for us to deal with
more complex object shapes. The averaged time per iteration
is related to the size of extracted fingertip space Φ, which
is shown in the parenthesis in the first column: the larger
fingertip space an object has, the more time it takes to search
for a precision grasp.

It is worth noting that the performance of the system is
generally better when fingertip radius was set to r2. Because
given the same fingertip embodiment, a larger fingertip unit
makes it safer to stabilize a contact. Fig. 7 displays some
example stable grasps synthesized by the system.

Object(radius: #Units) Stable(%) Rounds Time/Round
Bunny(r1: 3276) 98 1.73 13.08s
Bunny(r2: 293) 100 1.64 6.03s
Plane(r1: 579) 75 3.16 8.35s
Plane(r2: 96) 89 3.98 5.97s

Waschmittel(r1: 4236) 95 1.51 17.25s
Waschmittel(r2: 644) 95 1.22 9.13s

Cup(r1: 3068) 98 1.42 13.00s
Cup(r2: 730) 97 1.51 8.19s
Spoon(r1: 91) 88 1.83 8.22s
Spoon(r2: 49) 91 1.91 3.31s

Milk Box(r1: 3936) 100 2.69 13.68s
Milk Box(r2: 842) 100 3.73 9.98s

Fig. 6. Statistics of algorithm evaluation. Stable(%): The percentage
of stable grasps after the grasps were executed. Rounds: The
averaged rounds of Alg. 1 to successfully output a good grasp, note
that Alg. 1 is restarted if the final check is not satisfied. Time/Round:
The averaged time in seconds that one round of the algorithm takes.

C. Positioning Error Tolerance of Fingertip Space

In Fig. 8, grasps are shown with their realized contacts
(green) and synthesized contacts (red). The realized grasps
are usually a bit different from what was synthesized, both
in contact positions and normals. This is due to the fact
that the reachability measure employed in Sec. IV is an
approximation of the real reachability manifold and that the
Barrett hand is not dexterous enough to always sufficiently
deal with non-zero reachability residual. In this section, we
examine whether the synthesized grasps will remain stable
if the final executions of them have positioning errors with
respect to synthesized contacts.

The experiments have been conducted on Stanford Bunny,
Plane and Waschmittel models by assuming that the posi-
tioning errors are within one and two fingertip unit sizes,
given the fact that the positioning errors recorded in our

experiments were smaller than two fingertip unit size. Sim-
ilarly to the concept of Independent Contact Regions [40],
we consider a grasp as tolerant to positioning errors if all
contacts can be freely positioned within a certain range
without losing stability. In this experiment, 100 grasps have
been synthesized on all three objects, and contacts within
the error limit were sampled and the percentages of sampled
nearby stable grasps were recorded for each grasp. Test
results are shown in Fig. 9 as the percentages of the nearby
stable grasps with standard deviation on the bar plot.
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Fig. 9. Positioning error tolerance test results: percentages of stable nearby
grasps given positioning errors within one and two fingertip unit sizes.

As can be seen from the results, neighbors of synthesized
stable grasps remain stable with high probabilities. This is
an evidence for the fact that synthesized grasps are tolerant
to small positioning errors and that our reachability measure
retains the relevant information. This can be explained by the
fingertip space extraction: since fingertip units are positions
where the object surface is smooth, small positioning errors
will not heavily influence contact positions and normals, and
the grasp stability is therefore also not heavily influenced,
which can be referred back to our motivation in Sec. I.

D. Precision Grasp Synthesis with Noisy Data
In this section, we examine the performance of our algo-

rithm considering noisy sensory data. As shown in Fig. 10,
we scanned the Stanford Bunny, Plane and Waschmittel
models using a virtual 3D sensor while adding Gaussian
noise in the viewing direction. For the extraction of fingertip
units, the fingertip size was set to r2. As we can see, the
fingertip space becomes different comparing to noise-free
objects. However, it is worth to note that, although the objects
are noisy, the extracted fingertip units are still retaining the
property of flatness and smoothness.

Fig. 10. Noisy objects used in experiments and their corresponding
fingertip space.

Fig. 11 records the statistics of 100 runs of our approach.
Grasps were synthesized using noisy data and the final



Fig. 7. Example precision grasps synthesized by the algorithm.

Fig. 8. Positioning errors in grasp realization.

grasp qualities are computed after the synthesized grasps
have been executed on the perfect objects. The result shows
that the percentage of stable grasps have been decreased
in comparison to the noise-free experiments, however, the
system can still synthesize stable precision grasps.

Object(#Units) Stable(%) Rounds Time/Round
Bunny(122) 92 2.12 7.63s
Plane(111) 83 4.16 7.24s

Waschmittel(582) 90 2.05 9.75s

Fig. 11. Statistics of algorithm evaluation with noise. Stable(%):
The percentage of stable grasps after the grasps were executed.
Rounds: The averaged rounds of Alg. 1 to successfully output a
good grasp, note that Alg. 1 is restarted if the final check is not
satisfied. Time/Round: The averaged time in seconds that one round
of the algorithm takes.

E. Grasp Synthesis with Partially Observed Data

It is difficult to observe complete point clouds of target
objects in real applications. In this section, we simulate
partial views of objects by setting locations of a virtual
camera, and then we show example stable grasps synthesized
by the system, see Fig. 12.

Fig. 12. Upper: Fingertip space of the partially observed objects.
Lower: Grasps synthesized on partially observed objects. Unob-
served parts on the object are shown in transparency.

As shown in the examples, grasps can still be successfully
synthesized and the contacts are only synthesized for visible
positions. This is because the fingertip space extraction and

the hierarchy construction operate directly on the observed
point cloud and does not require the object to be completely
observed. This implies another advantage of the proposed
object representation that the system is able to synthesize
precision grasps as long as the observed parts of the object
are graspable. In the real applications, if no successful grasps
can be synthesized by the system from a single view of the
object, the robot can move to a different position to find
graspable parts.

F. An Example of Grasp Synthesis and Realization

In this section, we present an example of grasp optimiza-
tion and execution.

Multilevel Grasp Optimization

As the refinement procedure in Alg. 1 aims at improving
the objective function θ(Cg), it searches for larger Q(Cg)
and smaller R(Cg) values.

Fig. 13. Left: Records of multilevel grasp optimization. Right: Records of
contact positions optimization, ρ =

∥∥∥C+
g − C∗

g

∥∥∥ . The horizontal axes are
number of iterations in both figures.

Fig. 13 displays one example of θ(Cg), Q(Cg) and R(Cg)
curves of Alg. 1 applied on the Bunny model. We can see
that the θ(Cg) value is generally increasing with a few
decreases due to the randomness in the Alg. 1, and that
the Q(Cg) value is also generally increasing. However, the
R(Cg) value is decreasing but sometimes increasing, this is
because the search procedure was attempting many different
joint configurations to fit a grasp while balancing between
other objectives. Next, we apply the contacts optimization to
realized the grasp with synthesized contacts.



Contact Positions Optimization

As shown in Fig. 13, ρ value is generally decreasing
during the gradient descent but is occasionally overshooting.
The overshots are due to the joint space of robot hand and
the object surface is very complicated and has many local
optima. After the contact positions optimization is done, the
final stable precision grasp was achieved as shown on the
right. It is worth to mention that as the fingertips’ positions
after affine transform was already very close to the desired
position, the gradient descent did not need many steps to
converge.

VI. CONCLUSION

In this paper, we have proposed a concept of Fingertip
Space, which is an integrated representation of both object
local geometry and fingertip geometry, and shown its use in
precision grasp synthesis. By building a hierarchical repre-
sentation of the fingertip space, we have enabled multilevel
refinement for precision grasp synthesis. Our experimental
evaluation with a Barrett hand has shown that the fingertip
space and its hierarchy is a viable and efficient representa-
tion for precision grasp synthesis, and that the multilevel
refinement facilitates the search procedure. We have also
evaluated the positioning errors tolerance of our system, as
well as demonstrated examples of our system working with
noisy and incomplete data. In the future, we are planning to
implement our system on a real robot and additionally make
the modular system more compact and flexible for different
robot embodiments and search algorithms to be plugged in.
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