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Abstract—We address the problem of pre-grasp sliding manip-
ulation, which is an essential skill when a thin object cannot be
directly grasped from a flat surface. Leveraged on the passive
reconfigurability of soft, compliant, or underactuated robotic
hands, we formulate this problem as an integrated motion and
grasp planning problem, and plan the manipulation directly
in the robot configuration space. Rather than explicitly pre-
computing a pair of valid start and goal configurations, and
then in a separate step planning a path to connect them, our
planner actively samples start and goal robot configurations from
configuration sampleable regions modeled from the geometries
of the object and support surface. While randomly connecting
the sampled start and goal configurations in pairs, the planner
verifies whether any connected pair can achieve the task to finally
confirm a solution. The proposed planner is implemented and
evaluated both in simulation and on a real robot. Given the
inherent compliance of the employed Yale T42 hand, we relax
the motion constraints and show that the planning performance
is significantly boosted. Moreover, we show that our planner
outperforms two baseline planners, and that it can deal with
objects and support surfaces of arbitrary geometries and sizes.

Index Terms—Grasping, Manipulation Planning, Motion and
Path Planning

I. INTRODUCTION

GRASPING is one of the most fundamental abilities that
enables a robot to physically interact with objects and

use them for different tasks. Based on the geometrical or
topological representations of the target object, grasp planning
algorithms have been developed to generate grasp contacts,
hand configurations, hand poses and grasp policies [1, 2].
In order to simplify the physics modeling and focus on the
synthesis of high quality grasps, traditional approaches assume
that the object is static before a grasp is achieved [3–6].

In certain scenarios, although the object is graspable, pre-
grasp rotation is required to change the object’s orientation,
so as to allow the execution of desired tool-use grasps [7, 8].
In cases where an object is initially not graspable at all, it can
be first slid or pushed to a goal region, in which the robot
hand can reach a larger portion of the object surface to make
contacts, before grasp planning is conducted [9, 10].

Non-prehensile manipulation such as side-pushing and top-
sliding are two typical approaches for pre-grasp manipulation,
especially when the object is initially not graspable. When
planning for pushing motions, due to the complex physics
modeling or the need of object classification [9, 11], it is
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Figure 1. A WAM arm installed with a Yale T42 hand grasps thin objects.
The object is slid to an edge of the table and then grasped from the side.

usually computationally expensive or infeasible to generalize
to novel objects. For top-sliding, which is desired if the
target object is thin, motion planning and force control are
challenging if a fully-actuated hand is used. This is because
the hand has to always maintain stable contacts on the object
to ensure that the object slides with the hand, while it cannot
press too hard in order to avoid damage.

In this work, as illustrated in Fig. 1, leveraged on the
passive reconfigurability of soft, compliant, or underactuated
hands, we focus on the problem of pre-grasp top-sliding for
relocating and grasping thin objects, which is often used for
cards, coins, rulers, books, and other flat objects. As has been
demonstrated in many designs, underactuated hands provide
high degrees of adaptability, which enables the fingers to
passively reconfigure when external forces are applied [12–
14]. Many of these same benefits exist in “soft” or compliant
hands, although with a lesser degree of reconfiguration [15].
For top-sliding, this benefits the manipulation planning in three
aspects: 1) explicit force control is not required to maintain
stable contacts, which can be ensured by a certain amount
of finger reconfiguration; 2) the manipulation trajectory can
violate the constraint manifold as allowed by the finger recon-
figuration, and will not damage the hand or the object; and 3)
some motion constraints can be relaxed to make the planning
more flexible and efficient.

To this end, we formulate top-sliding manipulation as an
integrated problem of motion and grasp planning, constrained
on the manifold defined by the support surface. Rather than ex-
plicitly pre-computing the start and goal configurations [9], we
provide a more efficient approach by modeling configuration
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sampleable regions for the planner to sample from, and then
leave the planner to decide the start and goal autonomously.
Briefly, the start region is modeled in terms of the object
geometry to ensure valid initial contacts, which is maintained
as a constraint throughout the entire manipulation. The goal
region is modeled using the geometry of support surface’s
edges, around which thin objects can be potentially grasped.
The planner actively samples start and goal configurations
online, while randomly trying to connect a pair of them. Once
connected, the path is considered a manipulation solution if
the connected pair is verified to slide the object to a graspable
pose. Finally, we extend the classical CBiRRT algorithm
[16] by integrating configuration sampleable regions and pair
validation to address motion and grasp planning in a unified
framework.

We review related works in Sec. II and formalize the
problem in Sec. III. Thereafter, the integrated motion and grasp
planner will be detailed in Sec. IV. We evaluate our planner
using a Yale T42 underactuated hand mounted on a WAM arm
in Sec. V, and conclude our work in Sec. VI.

II. RELATED WORK

Grasp planning has been an active research topic that
involves a variety of subproblems ranging from, for example,
contact-based grasp synthesis [2, 17, 18] and hand posture
analysis [19], to grasp control [20], and learning of grasp
policies [5]. Assuming a free-floating object, grasps can be
planned neglecting environment constraints and motion feasi-
bility is checked posteriorly [21, 22]. For objects on a tabletop,
top-grasping policies are learned to establish grasp contacts
on the object’s side faces [5]. Furthermore, grasp and motion
planning are integrated to ensure the motion feasibility [3, 4].

Since the traditional approaches assume the target object is
static before grasping, they would fail in certain cases, such
as when a thin object is on the tabletop and no collision-free
grasp contacts can be found. Compliant mechanical designs
can solve this problem by positioning and closing the hand
above the object and utilizing contacts from the environment
to pick up the object [14]. However, due to the uncertainties
in modeling the dynamics in this process, the object’s final
pose in the grasp is unpredictable and makes it infeasible to
ensure that the object will be grasped in a desired pose.

To this end, as a subset of nonprehensile manipulation skills,
pre-grasp manipulation has been proposed. When the object is
initially surrounded by other movable objects in clutter, pre-
grasp object rearrangement is applied to make room for the
hand to reach and grasp [23, 24]. When the object is distant, it
can be slid to a closer area to allow for grasping [9]. To ensure
the object is grasped in desired poses for future usage, the
object is pre-manipulated to enable desired grasps [7, 8, 10].
In addition, toppling or tumbling actions can also be used to
reconfigure the object to a better graspable pose [25].

However, it is not easy to generalize the approaches to
novel objects when they are based on human demonstration,
hand configuration adaptation, and object classification [7, 9].
For physical simulation based planning [10, 23, 25], it is
computationally expensive, not robust to uncertainties in the

reality, and requires post-processing to find a motion trajectory.
Based on the passive reconfigurability of underactuated hands
[12–14], we in this work show that a common type of pre-
grasp manipulation, top-sliding, can be planned by integrating
motion and grasp planning and it operates directly on the
geometrical information. Therefore, it can work on novel
objects and does not rely on complicated physics models for
planning and control.

III. PROBLEM FORMALIZATION AND PRELIMINARIES

In this section, we formally define the top-sliding ma-
nipulation problem and introduce necessary preliminaries to
address this problem. As a major component of our system,
we develop a sampleable region based constrained motion
planning algorithm. Thereafter, the top-sliding manipulation
planning for grasping thin objects will be formulated as an
integrated motion and grasp planning problem in Sec. IV.

A. Top-sliding Manipulation

Top-sliding manipulation is a type of nonprehensile inter-
action between the robot and object to reconfigure the object
in SEp2q. For this, the robot is required to make contacts at
the top of the object and keep the contacts stabilized during
the entire manipulation, so that the object can translate and
rotate with the robot’s end-effector in SEp2q. Depending on
the robot used, the contacts can be made by single or multiple
fingertips, or by the hand palm.

Let C Ă Rpda`dhq be the robot’s configuration space,
and accordingly Cfree Ă C be the collision-free subspace.
Formally, represented by Stop Ă R3 the top surface of an
object in the world frame, any configuration φ P Cfree during
top-sliding manipulation should satisfy Γpφq P Stop ˆ SOp3q
to ensure stable contacts on Stop with relative orientation
from SOp3q, where Γ : C Ñ SEp3q calculates the forward
kinematics for the desired contact area on the end-effector. To
make this condition valid, the collision between the desired
contact area on the robot end-effector and Stop is neglected.

Assuming a pair of start and goal configurations, φs, φg P
Cfree, is given for a top-sliding manipulation task. Using stable
contacts between the robot’s end-effector and Stop, we need
to find a continuous path τ to move the object from its initial
pose to the desired goal pose. Concretely, the aim is to find a
continuous trajectory τ P Ξ˚ Ă Ξ : r0, 1s Ñ Cfree, such that:

τp0q “ φs ^ τp1q “ φg

Γpφsq P Stop ˆ SOp3q
T owptqΓpφtq ” T owp0qΓpφsq, @t P r0, 1s

(1)

where Ξ is a space of trajectories and Ξ˚ is a subspace
ensuring that the end-effector always keeps a fixed contact
with the object throughout the path. T owptq P SEp3q is the
transformation from the world frame to the object frame at
time t. The last condition in Eq. (1) enforces that the end-
effector keeps the same contact pose on Stop throughout
the sliding motion. This condition prevents the end-effector’s
contact to translate or rotate on the object surface and removes
the physical uncertainty involved in the sliding process.
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Figure 2. For the same initial object pose κs and final hand pose φg , top-
sliding manipulation can slide the object (blue) to different final poses κg
and κ1g dependent on the initial hand poses φs and φ1s. (a) The object was
slid to an ungraspable pose. (b) The object can be grasped from the support
surface’s side (gray) after sliding.

By definition, we can see that the object’s movement during
sliding is completely controlled by the motion of the end-
effector. However, it should be noticed that the object’s final
pose is not uniquely determined by the goal configuration
φg of the robot. As the main goal of the manipulation, we
need to derive how the object’s pose changes in terms of the
hand movement. Denoted by κ P SEp3q the object’s pose in
the world frame, an object’s final pose κg of a top-sliding
process is also determined by the start configuration φs of the
robot. Concretely, let invp¨q be the inverse of a transformation
in SEp3q, the relative pose between the object and the end-
effector during the sliding process is constrained by Eq. (2)
and depicted in Fig. 2.

κt “ Γpφtq ¨ invpΓpφsqq ¨ κs, @t P r0, 1s (2)

where κt becomes the final pose of the object when t “ 1
and φt “ φg . Considering both Eq. (1) and Eq. (2), given
an object start pose κs, the problem of manipulation planning
finally boils down to the problem of finding a pair of pφs, φgq
and a τ P Ξ˚ to connect them, such that the object will be
moved to κg P G, with G Ă SEp3q denoting the goal region
within which the object can be grasped.

To this end, this problem can be addressed from two
alternative perspectives. In one way, we can first pre-compute
start and goal poses pκs, κgq for the object, and then find
the corresponding pair of robot configurations pφs, φgq, for
which we compute a path τ in the robot configuration space
to connect. More efficiently, as proposed in this paper, we
actively sample a number of φs and φg from some valid
regions during planning. While randomly connecting the sam-
pled configurations, we verify each connected pair of pφs, φgq
in terms of the corresponding pκs, κgq, which can be calculated
by Eq. (2), to decide what pair of pφs, φgq is a valid solution.

B. Constrained Motion Planning

Object manipulation in general can pose certain constraints
on the robot configurations, such as a pose constraint to keep
the end-effector always in contact with the object. Most of
such constraints form manifolds that occupy extremely small
volumes in Cfree. Planning a trajectory in such manifolds
using pure sampling-based methods is therefore unlikely to
succeed. To enable efficient motion planning for top-sliding
manipulation, we develop a motion planner based on the
Constrained Bi-directional Rapidly-Exploring Random Tree

(CBiRRT) [16]. Given an explicit pair of start and goal
configurations, the original CBiRRT generates a trajectory to
connect them by randomly sampling in the robot configuration
space, and projects the constraint-violating samples onto the
manifolds by locally exploring the constraint gradients.

As defined in Sec. III-A, top-sliding manipulation planning
requires to find a pair of pφs, φgq. However, we in this work
do not compute such pairs explicitly prior to motion planning,
since it is likely that some arbitrary pairs are difficult to be
connected, or even do not have motion solutions, resulting in
the planner having to restart with a different pair. Doing so
makes the planning much less efficient since the planner needs
to always take some time to figure out there is no solution
until it restarts. Therefore, we extend the CBiRRT planner to
work with sampleable regions so that the planner can work
without requiring explicit start and goal configurations as the
input. Differently from CBiRRT2 [26], which samples multiple
roots for goal configurations and project them to a constraint
manifold, our planner samples roots for both start and goal
configurations directly from valid regions. However, note that
in our planner the configurations sampled from the goal region
are not guaranteed to result in a valid motion solution, our
planner needs to verify each connected start and goal pair to
ensure the validity of the connection.

Concretely, we denote Cs, Cg Ă Cfree as the start and
goal regions which the planner can sample from. Rather than
directly growing a forward tree and a backward tree to connect
a pair of known pφs, φgq P Cs ˆ Cg , the planner needs to
sample φis P Cs and φjg P Cg to construct a start forest
Πs “ tT is |i “ 1, . . . , nu with T is rooted at φis, and a goal
forest Πg “ tT

j
g |j “ 1, . . . ,mu with T jg rooted at φjg . While

the start and goal roots are being sampled, the planner in
the meantime grows the forests bidirectionally to connect the
start and goal configurations. The extended CBiRRT with
sampleable regions is summarized in Alg. 1, where Πa and
Πb denote the swappable forests that switch between start and
goal forests.

Algorithm 1 CBiRRT with Sampleable Regions
Input: Cs, Cg
Output: φs, φg , τ
1: Πa.InitpCsq, Πb.InitpCgq Ź Initialization
2: while Time.Available() do Ź Main Loop
3: if CanAddRootpΠa,Πbq then
4: Πa.AddFromRegion() Ź Add Random Root
5: end if
6: φrand ÐRandomConfig()
7: pTneara , φneara q Ð Πa.NearestTree(φrand)
8: φ˚a Ð Tneara .ConstrainedExtendpφrand, φneara q

9: pTnearb , φnearb q Ð Πb.NearestTreepφ˚a q
10: φ˚b Ð Tnearb .ConstrainedExtendpφ˚a , φ

near
b q

11: if φ˚a “ φ˚b then Ź A Connection Found
12: pφs, φgq Ð GetRoots(Tneara , Tnearb )
13: if IsPairValidpφs, φgq then Ź Start-Goal Validation
14: τ Ð ExtractPathpTneara , Tnearb , φ˚a q
15: return φs, φg , τ,
16: end if
17: end if
18: SwappΠa,Πbq Ź Swap Direction
19: end while

For each tree extension step, NearestTree(¨) returns the
nearest node in the whole forest as well as the corresponding
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Constraint Manifold

Figure 3. A schematic plot of Alg. 1. Start and goal configurations are being
sampled and added to the respective forests as roots for different trees. Once
a pair of start and goal is connected, it can be verified as invalid (red path),
as required by the task, by the IsPairValid(¨) function. A path is considered a
solution only if it makes a valid connection (green path).

tree to be extended from. The function ConstrainedExtend(¨)
from the classical CBiRRT is an unidirectional tree extension
procedure that tries to connect a configuration in the tree
towards a given target configuration [16]. If an intermediate
configuration violates the given constraints, the function will
try to project the configuration to a constraint manifold to
ensure the validity of the connection, and will terminate if the
projection failed or the target is reached.

We can see in Alg. 1 that the algorithm takes only two
sampleable regions as inputs and the forests are automatically
constructed. A new tree root is added into the forest in each
iteration as long as the CanAddRoot(¨) function allows. When
a random configuration is sampled, the planner needs to find
not only the nearest configuration, but also the corresponding
tree, from which ConstrainedExtend(¨) will extend towards
the sampled configuration. Once a connection is found, the
planner triggers the IsPairValidp¨q function to check whether
the connected pair satisfies certain criteria, before outputting
the connection path as a solution.

A schematic plot of Alg. 1 is depicted in Fig. 3, we can
see that it is possible that a connected pair of start and goal is
invalid for the task. It is also possible that starts and goals are
isolated in disconnected constraint manifolds and cannot be
connected via a single motion. As will be detailed in Sec. IV,
by designing certain functions in a problem specific manner,
solving a constrained motion planning problem using Alg. 1
will address the top-sliding manipulation problem defined in
Sec. III-A.

IV. INTEGRATING GRASP AND MOTION PLANNING

Next, we describe how the support surface and the object are
geometrically represented, as well as defining the sampleable
regions for both start and goal configurations. Thereafter, we
formulate top-sliding manipulation as an integrated grasp and
motion planning problem and solve it using Alg. 1.

A. Object Geometry and Start Region

In order to handle arbitrary object geometries and not rely
on any shape parameterizations, we represent the object’s top
surface Stop as a point cloud Po “ tpi P Stop | i “ 1, . . . , nou.
As we focus on thin planar objects in this work, we can assume

X

Z

Y

Flexure Joint

Surface Frame c

Figure 4. A fingertip is in contact with the top surface of an object at c P Po.
The XF -axis (red) of the fingertip frame is always aligned in the X-Y plane
of Stop. The angle α represents the yaw rotation of XF -axis about the surface
normal. β is the pitch angle between the ZF -axis (blue) of the fingertip frame
and the object surface.

that Po can uniquely represent the object’s geometry, since the
other side of the object is merely mirrored.

We define a contact c P Po as shown in Fig. 4. We can see
that the XF -axis of the fingertip frame is aligned in the X-Y
plane of the surface frame to make a line contact, which can
exert both translational and torsional forces at the contact to
ensure that the object is translated and reoriented completely
in terms of the fingertip’s movement, as required in Eq. (2). To
describe the fingertip’s pose, we denote by α the yaw angle of
fingertip about the surface normal, and by β, the pitch angle
between the fingertip and the surface plane. For other fingertip
models, such as area-contact fingertips, the same notations can
be used as long as Eq. (2) is satisfied.

Considering the second constraint in Eq. (1), we need to
ensure that a start configuration of top-sliding has the end-
effector in contact with Stop. Denoted by rpα, βq P SOp3q
the fingertip’s orientation when it is in contact with the object
surface, we define a sampleable region Cs Ă Cfree for start
configurations as:

Cs “ trΓpωq|ω P Ωsu

Ωs “ Po ˆ trpα, βq|α P r0, 2πq, β “ β0u
(3)

where β0 is a user-defined pitch angle and rΓ : SEp3q Ñ C cal-
culates the inverse kinematics of the robot given a fingertip’s
pose ω. Therefore, we can see that the sampleable region is
an infinite set. This set contains robot configurations that can
make contacts at any point in Po with a pitch angle β0 and
an unconstrained yaw angle α. Sampling from Cs guarantees
that the robot will always start with a valid configuration to
slide the object.

B. Support Surface Geometry and Goal Region

In this work, a planar support surface Ssurf Ă R3, on which
the object is initially located and then manipulated, is modeled
as a polygon and represented by a list of ordered edge points
Q “ pe1, . . . , ens

q, ei P Ssurf . As shown in Fig. 5, when the
object is located near an edge pei, ejq, some of the object is
sticking out of the support surface to allow for a grasp from
the side.

For pre-grasp top-sliding, it is intuitive that the robot’s goal
configurations should also have the fingertip poses around the
surface edges, so that the fingertip can potentially move the
object to a graspable pose. Therefore, using the same notations
α and β to describe the yaw and pitch angles between the
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CoM

Figure 5. A support surface is represented as a polygon with edge points
Q “ pe1, . . . , ens q. Pg is a set of points near the surface edges. An object
represented by point cloud Po is slid to P 1o located near one of the surface
edges. u is the largest distance between the edge pei, ejq and object’s points
which stick out of support surface. The object can be grasped using the hand
pose Hg if u is large enough.

fingertip and the support surface, we define a sampleable
region Cg Ă Cfree for goal configurations as:

Cg “ trΓpωq|ω P Ωgu

Ωg “ Pg ˆ trpα, βq|α P r0, 2πq, β “ β0u
(4)

where Pg Ă R3 is a set of points near the surface edges. As
depicted in Fig. 5, Pg is obtained by contracting the surface
edge points towards the inside of the surface, so that an area
is formed between the original surface and the contracted
surface. Note that the points in Pg have a different height
than the support surface. To ensure the constraint in Eq. (2),
the height of Pg is lifted by the object’s thickness.

Sampling goal configurations from Cg will ensure that the
fingertip will be in contact with the object Stop, and that the
object is near the table edges. However, this does not guarantee
that the object is in a graspable pose. Next, we will assemble
the developed components together to address the pre-grasp
top-sliding problem, so that the object will be slid from its
original pose to some graspable pose near the edges of the
support surface.

C. Integrated Planner

Considering a thin object represented by point cloud Po on a
support surface represented by Q, the object is graspable from
the side of the support surface only if the object’s pose satisfies
three conditions: 1) The object has enough portion sticking out
of the surface for the hand to grasp; 2) The object’s center of
mass (CoM) is inside the surface Q so that the object can stay
on the surface before grasping; and 3) There exists a motion
solution to move the hand to the grasping pose. Using the
sampleable regions for start and goal configurations, we are
now able to address this problem as an integrated grasp and
motion planning problem and solve it using Alg. 1.

1) Pair Validation: Formally, the integrated planning is
conducted by the combination of sampleable regions and the
IsPairValid(¨) function. As described in Sec. IV-A, the roots of
the start forest are sampled from Cs to ensure fingertip contacts
on the object Po, while the roots of the goal forest are sampled
from Cg to finally relocate the object near the support surface’s
edges. Once a pair of start and goal is connected by a path
τ P Ξ˚ using the motion planning procedure in Alg. 1, the

function IsPairValid(¨) will be invoked to verify whether the
object can be moved to a graspable pose by τ .

Given a goal configuration φg , we can compute the object’s
final pose using Eq. (2) dependent on which start configuration
φs is paired. As such, we can transform Po, which is a point
cloud representing the object geometry in its original pose, to
its final pose P 1o, as depicted in Fig. 5. Thereafter, we check
for each pi P P 1o whether it is within the surface defined by
the polygon Q using the point-in-polygon algorithm [27]. We
then obtain the partial point cloud Pouto Ă P 1o which contains
all the points sticking out of the support surface Q. As shown
in Fig. 5, we calculate the largest distance, denoted by u P R`,
between Pouto and the edge pei, ejq, which is the closest edge
to the center of mass of Pouto .

Lastly, denoting u˚ as the minimum contact size at the
fingertip, if u ě u˚ and the CoM of P 1O is inside the surface
polygon Q, we need to verify whether Pouto is kinematically
reachable for grasping. For this, as shown in Fig. 5, we
compute a hand pose Hg P SEp3q to reach the object
perpendicularly to the edge in the Q plane and grasp at the the
geometric center of Pouto . Finally, if Hg can be reached with
a motion starting from φg , IsPairValid(¨) will return True and
the planner will output the pair pφs, φgq and τ as the solution.

2) Root Sampling: As described in Alg. 1, root sampling
is controlled by the function CanAddRoot(¨). Dependent on
the planning status, we wish to progressively control whether
a new root should be added to the forests. In case there are
not enough roots in each forest, the planner will struggle to
connect the limited number of pairs, which could be difficult
or impossible to connect as depicted in Fig. 3. In another case,
if there are too many roots, the planner will be slowed down
as it is distracted by many trees.

As such, denoted by Ns, Ng P N` the number of roots in
the start and goal forests Πs,Πg , the planner decides whether
to add new roots in the forests by:

CanAddRootpΠs,Πgq “

#

True, e´
Ns`Ng

N˚ ą randp0, 1q

False, Otherwise
(5)

where N˚ P N` is a number indicating how conservative the
planner behaves in adding new roots. Larger number makes
it less conservative. We can see that the probability of adding
new roots is never zero. This guarantees the probabilistic
completeness that, given infinite amount of time, the planner
will finally find a solution as long as there is such a pair
resulting in a successful top-sliding manipulation.

3) Constraints and Relaxations: Since the fingertip is al-
ways in contact with the object’s top surface during slid-
ing manipulation, in addition to collision checking, the
ConstrainedExtend(¨) function in Alg. 1 needs to take an extra
condition to ensure that the fingertip never moves out of
the support surface. This is strictly enforced to avoid object
dropping from the support surface during sliding, and can be
implemented based on the forward kinematics Γp¨q and the
point-in-polygon method.

Recall that the last constraint in Eq. (1) enforces that the
relative pose between the fingertip and the object is fixed. This
forms a constraint manifold occupying an infinitesimal volume
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Figure 6. Passive reconfigurability of the flexure joint on the Yale T42 hand.
Left: The finger in its resting configuration. Right: The finger is passively
reconfigured by the contact force at the fingertip.

in Cfree and renders the planning very inefficient, since almost
all the random samples would require to be projected to
the exact constraint manifold. Similar to [16], we relax the
constraints to expand the manifold with a small neighborhood
to accelerate the planning. As depicted in Fig. 6, this relaxation
is possible since the underactuated finger provides passive
reconfigurability to compliantly adapt the hand configuration
when external forces are applied at the fingertip. To this end,
based on the motion constraint in Eq. (2), and the contact
constraints in sampleable regions in Eq. (3) and Eq. (4), we
define two constraint relaxations for the contact pitch angle
∆β P R and for the contact depth ∆Z “ r∆´Z ,∆

`
Z s P R2,

∆´Z ď ∆`Z . The difference, ∆˚z “ ∆`Z ´ ∆´Z , between the
relaxation bounds on contact depth is termed as Reconfigura-
tion Range, which essentially determines the volume of the
expanded constraint manifold.

Intuitively, these relaxations are feasible since both of them
do not affect the object’s pose constrained on a support surface
in SEp2q. The relaxation ∆β enables the pitch angle to vary
in a symmetric range rβ0´∆β , β0`∆βs to allow reasonable
contact rolling. ∆Z enables the contact to virtually penetrate
the object surface and vary its depth in an asymmetric range
rzs ´∆`Z , zs ´∆´Z s, where zs P R is the height of the object
surface Stop. We can see that the contact is kept below the
height of Stop by at least ∆´Z , in order to keep a minimum
amount of finger reconfiguration at the contacting fingertip
to exert enough force to slide the object. Furthermore, ∆`Z
allows more additional finger reconfiguration for the path
planning to improve the efficiency. Based on the relaxed
constraints, we conduct the manifold projection by employing
a gradient-based method for the ConstrainedExtend(¨) function
as proposed in [16].

V. EXPERIMENTS

We evaluate our approach from 4 perspectives: 1) We show
that the proposed approach can work with arbitrary objects
and support surfaces, and that the planner is not sensitive to
object scales; 2) We quantitatively evaluate how the planner’s
efficiency can be improved by the reconfiguration range ∆˚Z ;
3) We compare our method with two baseline methods; and
in the end, 4) We analyze how the planner’s performance is
affected by its conservativeness in adding more start and goal
configurations during planning, as defined by the factor N˚

in Eq. (5) .
In the experiments, we used 9 plastic thin flat objects shown

in Fig. 7. The planner has been implemented for a WAM arm
installed with a Yale T42 hand in both Gazebo simulator [28]

Figure 7. Plastic test objects used in the experiments: Square, Circle, Triangle,
Crescent and Irregular, as well as the “Y”, “A”, “L”, “E” letters.

and on a real platform. The implementation is partially based
on the OMPL library [29, 30] and written in Python. The
reported evaluations were run on a machine with an Intel(R)
Core(TM) i7-3770 CPU @ 3.40GHzˆ4 and a 8GB RAM
running Ubuntu 16.04. Some example real robot experiments
can be seen in Fig. 1 and Fig. 8. Since the contact pitch
relaxation ∆β can be applied to both fully-actuated hands
and underactuted hands, we fix it to be ∆β “ 0.1rad in our
evaluation and focus on the reconfiguration range ∆Z . As will
be shown in Sec. V-4, we set N˚ “ 100 for better performance
unless elsewhere stated.

1) Geometries of Objects and Support Surfaces: The plan-
ner has been evaluated using 5 objects on 4 different support
surfaces. As illustrated in Fig. 9, our planner is able to
plan pre-grasp top-sliding manipulations for the robot to slide
different objects on different support surfaces to graspable
poses. As described in Sec. IV-B, all the support surfaces are
represented as polygons, and for the round table, we used 100
edge points to approximate the shape of the circle.

We randomly sampled 50 initial object poses on each of the
4 support surfaces and applied the planner on 5 test objects to
conduct in total 50ˆ4ˆ5 “ 1000 experiments in simulation.
In addition, we scaled down the objects by half and repeated
same experiments. From the results summarized in Fig. 10,
we can see that for different object geometries and sizes,
the average planning time is similar. Moreover, the planner
performed equally well for 4 different support surfaces. These
results imply that the geometrical representations of objects
and support surfaces developed in Sec. IV are able to work
with any shapes and are insensitive to geometries and scales.

2) Reconfiguration Range: We now evaluate the impact of
∆Z , which is only available for underactuted hands. According
to the mechanical properties of the employed T42 hand, we
set ∆´Z “ 0.5cm to ensure enough contact force, and vary the
reconfiguration range ∆˚Z for evaluation.

For this experiment, we used the square table and randomly
sampled 100 initial object poses for the 5 objects and applied
the planner with 3 different ∆˚Z values to conduct in total 1500
runs. As reported in Fig. 11, with a reconfiguration range of
∆˚Z “ 2cm, the planner was able to achieve a success rate
of higher than 90% within 20 seconds and finally 99% at 60
seconds. However, it took the planner 53 seconds to reach a
success rate of 90% when the reconfiguration range was set to
∆˚Z “ 0.5cm. In the worst case, when we set ∆˚Z to be 0, the
planner was able to successfully generate plans for only 2%
of the test cases within the time budget of 60 seconds. This
result shows that the passive reconfigurability enabled by the
underactuted hand is essential and that it significantly affects
the performance.
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Figure 8. Real executions of the proposed planner using a WAM arm installed with a Yale T42 hand. The objects are perceived using a Kinect sensor installed
over the tabletop. The plastic “Y”, “A”, “L” and “E” letters are grasped after executing the pre-grasp top-sliding manipulations planned by our planner. More
example executions can be found in the supplementary video.

Figure 9. The proposed approach is able to plan pre-grasp sliding manipulations for arbitrary geometries of support surfaces and target objects. The example
support surfaces are: triangle table, round table, long table, and square table.
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Figure 10. Upper: Average planning time for 5 test object geometries. Lower:
Planning time averaged over 5 objects on different support surfaces. The
planner was executed with constraint relaxation factors ∆β “ 0.1rad and
∆Z “ r0.5cm, 2.5cms. The error bars show standard errors.
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Figure 11. The planning success rate as a function of planning time, which
can be interpreted as a chance of planning success. The shaded areas show the
95% Wilson confidence interval. The reconfiguration range is set to be ∆˚Z “
0cm, 0.5cm and 2cm. The blue and orange curves show the performance of
two baseline methods with ∆˚Z “ 2cm for comparison.

3) Baseline Comparison: In addition to the proposed ap-
proach, we implemented two other methods based on CBiRRT
and CBiRRT2 and repeated the experiments as in Sec. V-2.
Briefly, for CBiRRT-based method, we pre-compute valid start
and goal robot configuration pairs and only ask the planner
to plan the trajectory under motion constraints. While for
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Figure 12. Average planning time in terms of how conservative the planner
adds new start and goal configurations, as determined by N˚ in Eq. (5). In
this experiment, the reconfiguration range is set to ∆˚Z “ 2cm.

CBiRRT2-based method, only start robot configuration is pre-
computed and the goals are sampled.

As reported in Fig. 11, both baseline planners performed
worse than our approach. This is because of two reasons:
a) it is possible that there does not exist a path to connect
the given start and goal pair for the CBiRRT-based method,
and b) a given start configuration can only be connected
through some narrow passages in the constraint manifold. It is
interesting to notice that the CBiRRT2-based method is better
than the CBiRRT-based method only when the time budget is
long enough. This is because the CBiRRT2-based method is
inherently more expensive since it has to manage a forest and
needs to verify solution pairs. However, when given enough
time, it will start to benefit from having more goals which
could give it easier pairs to connect. As such, the proposed
sampleable regions for both starts and goals can enable the
planner to perform much better, since it is not forced to focus
on any explicit starts or goals. Instead, it tries to connect any
pair that is feasible and easy in motion.

4) Root Sampling: As defined in Eq. (5), the parameter N˚

controls how conservative the planner behaves in adding more
roots. A larger number makes it less conservative and vice
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versa. To evaluate how this parameter affects the planner’s
performance, we repeated the experiments in Sec. V-2 for 5
values of N˚ and report in Fig. 12. As indicated by the results,
when the value is small, the planner is too conservative and
does not benefit much from having many starts and goals. On
the other hand, when the value is too big, the planner will
suffer from being distracted by too many roots in the forest
and being computationally too expensive. In our evaluations,
the best performance was observed when N˚ “ 100.

VI. CONCLUSION

In this work, we addressed the problem of pre-grasp sliding
manipulation planning for grasping thin objects on planar
support surfaces. In particular, leveraged on the passive recon-
figurability of underactuated hands, we focused on top-sliding
manipulation and formulated the problem as an integrated
motion and grasp planning problem with constraints. Rather
than explicitly pre-computing start and goal configurations
for manipulation, and later on connect them using a motion
planner in a separate step, we developed configuration sam-
pleable regions to enable our planner to automatically generate
start and goal candidates. By extending the classical CBiRRT
algorithm with the sampleable regions, our planner constructs
start and goal forests and bidirectionally connect them while
respecting task constraints. The integrated motion and grasp
planning was realized by a superimposed pair validation to
ensure the generated motion in the robot’s configuration space
can slide the object to a graspable pose. By relaxing the
task constraints based on the passive reconfigurability of
underactuated hands, we showed that the robot can exert
appropriate forces at the contacts to achieve manipulation
without requiring complicated force planning or control.

The proposed approach was implemented in both simulation
and on a real robot. The experiments validated our problem
formulation, and the evaluation results showed that our ap-
proach outperforms two baseline planners and that the passive
reconfigurability of underactuated hands can significantly im-
prove the planning efficiency. In future work, we plan to extend
our approach to work in cluttered environments with multiple
objects on the support surface, as well as enabling it to work
with un-planar surfaces.
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