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Abstract— In this work, we present an algorithm that si-
multaneously searches for a high quality fingertip grasp and a
collision-free path for a robot hand-arm system to achieve it.
The algorithm combines a bidirectional sampling-based motion
planning approach with a hierarchical contact optimization
process. Rather than tackling these problems in a decoupled
manner, the grasp optimization is guided by the proximity to
collision-free configurations explored by the motion planner.
We implemented the algorithm for a 13-DoF manipulator and
show that it is capable of efficiently planning reachable high
quality grasps in cluttered environments. Further, we show that
our algorithm outperforms a decoupled integration in terms of
planning runtime.

I. INTRODUCTION

Fingertip grasp planning is essential for robotic manip-
ulation, especially for in-hand manipulation. Hence, it has
been an active research field in the past decades [1]–[3].
However, due to the high dimensionality of the hand-arm
configuration space and the complex objective modeling,
contact-level grasp planning and motion planning for a hand-
arm system have traditionally been tackled in a strongly
decoupled manner. As such, due to kinematic limits or
collisions with the environment, a grasp planner generally
does not guarantee that a solution can be executed. To
this end, recent works have developed systems to integrate
grasp and motion planning [4]–[7]. While these works have
successfully shown the capability of planning collision-free
grasping motions, the grasps are obtained by sampling hand
poses in the workspace around the target object followed by
an optimization of the reachable grasps given the sampled
pose. For this, heuristics such as object dependent superel-
lipsoid work space regions or human trained hand synergies
have been used. However, to the best of our knowledge,
the problem of simultaneously planning explicit fingertip
contacts and an associated motion still remains an open
problem.

In this work, we integrate the Hierarchical Fingertip Space
(HFTS) grasp planner [8] with a bidirectional sampling-based
motion planner [9]. The presented algorithm simultaneously
explores the robot configuration space as well as the grasp
space to compute a path to a feasible high quality grasp.
In this process, the grasp search is guided towards feasible
solutions through proximity to configurations explored in the
motion planning search. As illustrated in Fig. 1, our algo-
rithm efficiently detects motion-feasible grasp configuration
regions in a hierarchical manner and optimizes promising
grasps to construct high quality grasp solutions.
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Fig. 1: Our algorithm efficiently explores the hierarchical HFTS search
space for feasible high quality grasps while planning hand-arm motions. The
exploration is guided by a rating function that measures the feasibility of
grasp configurations based on the proximity to collision-free configurations
explored in the motion planning process. The figure illustrates the state
of exploration after a feasible grasp was found. The transparent config-
urations (red: in collision, green: collision-free) are associated with the
different nodes in the grasp search. Video: http://www.csc.kth.se/
˜haustein/videos/ICRA2017.mp4

II. TERMINOLOGY & PROBLEM DEFINITION

In this work, we address the problem of motion and
fingertip grasp planning for a robot with a da-DoF arm and
a dh-DoF dexterous hand. We assume that the geometry,
the kinematics and state of the robot, the geometry of its
environment, as well as the geometry and pose of the target
object is known.

For our robot, let C denote the combined d = da + dh
dimensional configuration space and accordingly Cfree ⊂ C
the collision-free subspace. Given a start configuration
φs ∈ Cfree, our goal is to find a continuous path
τ : [0, 1] → Cfree such that τ(0) = φs and
τ(1) = φg , where φg is a goal configuration that lies
in a goal region CG ⊂ Cfree. Our goal is to plan a path to
a configuration in CFC , the set of configurations in which
the robot achieves a high quality fingertip grasp on the
target object. However, formally such configurations are by
definition not within Cfree and hence we define the goal
region as CG = {φ ∈ Cfree | c(φ) ∈ CFC}, where
c(φ) : C → C closes the hand within some predefined
threshold.

A. Fingertip Grasp Planning utilizing HFTS
As described in [10], given a grasp quality function and a

robotic hand, contact-level grasps on arbitrary object shapes

http://www.csc.kth.se/~haustein/videos/ICRA2017.mp4
http://www.csc.kth.se/~haustein/videos/ICRA2017.mp4


HFTS Tree

Fig. 2: The HFTS tree for grasp planning. The nodes on different levels
represent approximate grasps with different partitioning resolutions.
can be planned efficiently using the Hierarchical Fingertip
Space (HFTS). In brief the HFTS is constructed as follows.
Given a point cloud of an object’s surface, a discrete set
of candidate contacts is extracted by using a user-defined
filtering function to filter out unsuitable contacts. Thereafter,
this set is recursively partitioned into subsets of contacts to
approximate contacts of different resolution on each level.
These partitions are then used to construct the Hierarchi-
cal Fingertip Space, denoted H . Concretely, for m-contact
grasping, on each partitioning level a candidate grasp h is
formed as an m-tuple of partitions. Hence, each level of the
hierarchy consists of all potential combinations of partitions
on that level. As we descend in the hierarchy, the nodes
approximate more accurate candidate grasps as shown in
Fig. 2. A grasp hi+1 on level i + 1 is a child of grasp hi
if and only if all contact partitions of hi+1 are respectively
subsets of hi’s contact partitions.

Since Ferrari-Canny’s contact-level grasp quality func-
tion [11] is Lipschitz continuous [12], we can approximate
the grasp quality Q(h) ∈ R of lower level grasps by the
quality of their higher level ancestors. For this, we compute
the quality of a higher level grasp, which is an m-tuple of
contact partitions, as the quality of the representative grasp
made of the mean positions and normals in its m contact
partitions. In addition to Q, [10] evaluates a reachability
function R(h) ∈ R≥0 of a robotic hand for a candidate grasp
h to linearly relax the hand reachability constraint. Here, a
smaller R(h) indicates better reachability.

A stable and reachable grasp can be obtained in the HFTS
by optimizing

max
h∈H

Q(h)

R(h) + α
(1)

where α ∈ R+ is a weighting factor to prevent the division
by zero in case h is exactly reachable. Starting from the
top of the HFTS, the algorithm maximizes Eq. (1) to pursue
better grasp quality and reachability. The maximization is
conducted by stochastic hill climbing with a fixed number
of iterations on each level. After a solution ĥi is found on
level i, the algorithm descends to level i + 1 and continues
a finer optimization on the children of ĥi. This procedure
is continued until a grasp is found on the bottom level.
Thereafter, our previous work [10] first computes a hand
configuration by querying a precomputed database followed
by computing an arm configuration for posing the hand.

B. Problem Definition
The optimization procedure as described above considers

neither the kinematic restrictions of the arm nor collisions

with the environment. As a consequence, many of the
computed grasps are not feasible for execution. Thus a naive
integration of the grasp planner into a motion planner as
goal sampler results in a significant amount of computational
effort being wasted on computing infeasible grasps.

Hence, instead of solving Eq. (1), the grasp planner should
ideally solve

maximize
h∈H

Q(h)

R(h) + α

subject to Φ(h) ∩ Cfree 6= ∅
∃τ ∈ Ξ : τ(0) = φs ∧ τ(1) ∈ Φ(h)

(2)

where Φ : H → 2C maps fingertip grasps to the set of
robot configurations achieving these and Ξ = C[0,1]

free is the
set of collision-free paths. We refer to the first constraint
as reachability constraint and to the second constraint as
connectability constraint. Note that fulfilling connectability
implies fulfilling reachability. However, reachability is gen-
erally easier to relax, which is why we distinguish between
the two.

Various precomputed heuristics have been proposed that
would allow a relaxation of the reachability constraint in
environments with few obstacles [13]–[15]. In the presence
of many obstacles, however, these methods do not suffice
as they are generally difficult to adjust to collisions. The
connectability constraint is a difficult problem because in
order to determine whether a path between two configura-
tions exists, an algorithm needs to determine whether both
configurations lie within the same connected component of
Cfree. Therefore, rather than computing for each h ∈ H
explicitly whether both constraints are fulfilled, the key idea
of this work is to utilize the knowledge about Cfree that is
gradually acquired online by a motion planning algorithm
to estimate which regions of H are likely to fulfill the
constraints. For this, our underlying assumption is that grasps
with similar contacts can be achieved by similar robot
configurations. Thus we assume that if a grasp hi on level
i fulfills the aforementioned constraints, the descendants of
hi are also likely to fulfill the constraints.

III. METHODOLOGY

An overview of our framework is shown in Fig. 3. The
framework consists of two separate components that share
current knowledge of Cfree. On one side, a modified version
of the Constrained Bi-directional Rapidly-Exploring Random
Tree (CBiRRT) algorithm [16] explores C and attempts to
connect goal configurations to the start configuration. On the
other side, a goal sampling algorithm utilizes the HFTS fin-
gertip grasp planner to search for these goal configurations.

The key idea behind our framework is to guide the
goal sampling towards regions of the grasp search space
that appear to be promising to fulfill the reachability and
connectability constraint. This guidance is performed based
on the current knowledge the system has acquired on Cfree.
As the motion planning algorithm is constructing search
trees, knowledge on Cfree is gained in terms of samples.
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Fig. 3: Our framework consists of two components. A bidirectional sampling-based motion planning algorithm is used to explore the robot configuration
space to find a path between the start configuration and a reachable fingertip grasp. The goal sampler, in turn, provides configurations that achieve high
quality fingertip grasps on the target object. For this, the goal sampler relies on the current knowledge of Cfree, which is shared with the motion planning
algorithm.

These samples can be classified in two sets: connected free-
space and non-connected free-space. The connected free-
space is the set of samples that are connected to the start
configuration, i.e. the forward tree Tf . The non-connected
free-space is the set of samples that is known to be collision-
free, but not connected to the forward tree. This set consists
of the backward trees that are constructed by the motion
planner as well as a set A ⊂ Cfree that is maintained by the
goal sampler.

When the motion planner queries the goal sampler for a
new goal it, is not guaranteed that it succeeds in computing a
valid goal. In this case, the goal sampler provides the motion
planner with an approximate goal φg ∈ A, if available.
An approximate goal is a collision-free configuration that
is likely to be in some neighborhood to some valid goal
configuration. The motivation for this is twofold. First, it
provides the motion planner with configurations that drive
the exploration into relevant regions of Cfree. Second, if such
an approximate configuration is connected to Tf , the goal
sampler gains an improved estimation on the connectability
constraint. As a consequence, however, we need to distin-
guish between different types of backward trees - those
that root in goal and those that root in approximate goal
configurations. We denote these two sets as BG and BA
respectively.

A. Motion Planning

Rapidly-Exploring Random Tree (RRT) based algorithms
have shown to be successful even in high dimensional
search spaces and are commonly applied to a variety of
search problems [9], [17]–[19]. The CBiRRT algorithm at
hand builds such search trees incrementally from both start
and goal configurations, while respecting constraints on the
configuration space. Our modification of the algorithm is
shown in Algorithm 1. In contrast to the original algorithm
from [16], our modified version maintains the two sets of
backward trees BG and BA. In each iteration the algorithm
either extends the existing trees and attempts to connect a
backward tree to the forward tree, or samples a new goal
configuration. The sampling of a goal configuration is per-
formed by the goal sampling algorithm shown in Algorithm 2
and is explained in detail in III-B.

The probability pg , by which a new goal configuration is
sampled, is dynamically adjusted based on the number of

backward trees currently available. This dynamic adjustment
allows the algorithm to first focus on finding (approximate)
goal configurations. Once backward trees exist, pg decreases
allowing the algorithm to focus on extending the search trees
rather than goal sampling. Since it is not known whether
any of the backward trees lie within the same connected
component as the forward tree, pg does not decrease to 0 but
instead to some minimal goal sampling probability pmin.

When the algorithm succeeds in connecting a backward
tree Tb to the forward tree, we need to distinguish between
Tb being rooted at an approximate goal or a real goal. In
case it originates from an approximate goal, i.e. Tb ∈ BA,
Tb is merged with the forward tree and the search continues.
Note that in this case, the goal sampling probability pg
dynamically increases again. Furthermore, by merging Tb
with Tf all configurations stored in Tb become part of the
connected free-space, which, in turn, influences the goal
sampling algorithm.

The algorithm terminates when either the total processing
time exceeds some user defined threshold or the algorithm
connects the forward tree to a backward tree originating
from a real goal, i.e. Tb ∈ BG. In the latter case the path
connecting φs ∈ Tf and φg ∈ Tb is extracted and smoothed
by a shortcut algorithm similar to [20].

1) Extending Search Trees: The tree extension procedure
alternates between a forward and backward direction. In the
forward direction it first extends the forward tree and then
a backward tree; in the backward direction it is vice versa.
The extension for a tree T is performed as it is common
for RRTs by sampling a random configuration φr ∈ Cfree
followed by an attempt to connect the closest configuration
in T to φr. Thereafter, an attempt is made to connect the
forward tree to a backward tree.

In case the search direction is forward, the forward tree
is first extended towards the random sample. Then, the
backward tree that is closest to the new forward tree node
is selected for an connection attempt. In case the search
direction is backward a random backward tree is selected
and extended towards the random sample. Then, similar as
before, a connection attempt between the selected backward
tree and the forward tree is made. Selecting the backward tree
randomly guarantees that no backward tree overshadows the
expansion of other backward trees. Since connecting back-



Algorithm 1: The motion planning algorithm.
Input: Start configuration φs ∈ Cfree, Time limit Tmax, Goal hierarchy

search space H
Constants: Goal probability parameters pmax, pw, pmin

Output: Path [φs, . . . , φg] or ∅
1 Tf ← TREE(φs)
2 dir ← forward
3 BG ← ∅; BA ← ∅
4 G ← CREATEGOALHIERARCHYCACHE(H )
5 A ← ∅
6 while not TERMINALCONDITION(Tmax) do
7 p← SAMPLEUNIFORM([0, 1])
8 pg ← pmaxe

−pw|BG∪BA| + pmin

9 if p ≤ pg then
10 φg ← SAMPLEGOAL(Tf , BG ∪ BA,A,G)
11 if φg ∈ Cgoal then
12 BG ← BG ∪ {TREE(φg )}

13 else if φg ∈ Cfree then
14 BA ← BA ∪ {TREE(φg )}

15 else
16 bConnected, dir, Tb ← EXTENDTREES(Tf , BG, BA, dir)
17 if bConnected then
18 Tf ← Tf ∪ Tb
19 if Tb ∈ BG then
20 return EXTRACTANDSHORTCUTPATH(Tf )

21 else
22 BA ← BA \ {Tb}

23 return ∅

ward trees that originate from real goals is more desirable,
we bias the random selection towards these backward trees
with probability pgoalTree.

2) Projection Heuristic for Backward Tree: For the ex-
tension of a search tree, we utilize the ConstrainedExtend
method as presented in [16]. This method extends a tree
iteratively from a given start towards a target configuration
with some step size ∆φ. In this process it utilizes a projection
function to project intermediate configurations to a constraint
manifold. In this work, we do not define a constraint man-
ifold. Instead, we utilize a projection function to assist the
motion planner in extending backward trees from grasping
configurations. These configurations are by definition close
to collisions and generally any path leading to one must pass
through narrow passages. Hence, a tree growth guided by
uniform random sampling is likely to fail in many cases.

Given a previously sampled configuration φold ∈ Cfree
and a newly sampled configuration φnew = φold + ∆φ
our projection function attempts to project φnew to Cfree if
necessary. For this, the method first determines whether the
end-effector in configuration φold is within some user-defined
distance Dm to the target object and whether φnew /∈ Cfree.
Only if these conditions are fulfilled, the method computes a
heuristic configuration gradient that moves the end-effector
away from the target position and opens the hand. The
projected configuration is then φ′new = φold+〈g, h〉h, where
g = φnew−φold is the intended direction of movement and h
the heuristic gradient computed. In case the aforementioned
conditions are not fulfilled or 〈g, h〉 ≤ 0, the projection
function is the identity function. Therefore, it does not limit
the approach directions. Furthermore, this projection is only
applied when extending backward trees.

3) Distance Function: The performance of any RRT-
based algorithm is strongly influenced by the distance func-

Algorithm 2: The goal sampling algorithm SAMPLEGOAL.
Input: Forward tree Tf , Set of backward trees B, Cache of approximate goals

A, Goal hierarchy cache G,
Output: A robot configuration φ ∈ Cfree that is either a goal or close to a

goal. ⊥ if no new φ ∈ Cfree was found.
Constants: Connected free space weight wc, Non-connected free space weight

wf , Number of samples κ, Number of iterations imin, imax

1 np ← ROOT(G)
2 k ← κ
3 while k > 0 do
4 nc ← PICKCHILD(np)
5 if SHOULDDESCEND(np, nc) then
6 np ← nc

7 else if cvr(np) = 1 then
// If all children have been sampled

8 if Cnc ∩ Cgoal 6= ∅ then
9 φg ← SAMPLENULLSPACE(nc)

10 if φg ∈ Cfree then
11 return φg

12 k ← k − 1

13 else
// Sample a new child

14 i← imin +
T (np)

wf+wc
(imax − imin)

15 nc ← SAMPLENEWCHILD(np, i)
// Implicitly adds nc to G

16 Cha(np)← Cha(np) ∪ {nc} // See Sec. III-B.6.
17 Ch(np)← Ch(np) ∪ {nc}
18 {φ} ← Cnc
19 if φ ∈ Cgoal then

// Implies nc is a leaf.
20 return φ

21 if φ ∈ Cfree then
22 A ← A∪ {φ}

23 k ← k − 1

24 if |A| > 0 then
25 φ← SAMPLEUNIFORM(A)
26 A ← A \ {φ}
27 return φ

28 return ⊥

tion on C. For φ, ψ ∈ C we utilize the norm

‖φ− ψ‖ = sqrt(
d∑
i=1

ωi(φi − ψi)2) (3)

where ωi ∈ R≥0 are weights for each DoF.

B. Cfree-Proximity-Guided Goal Sampling

The goal sampling algorithm shown in Algorithm 2 uti-
lizes the HFTS grasp search space to search for a new grasp.
Rather than descending all the way to the bottom of the
HFTS hierarchy as described in II-A, the algorithm only
optimizes Eq. (1) for one level at a time. On each level
the algorithm evaluates whether to descend further in the
hierarchy or to keep searching for alternative local optima
based on a heuristic T for the reachability and connectability
constraints, which is defined later in Eq. (5).

1) The Goal Hierarchy Cache G: For this the algorithm
incrementally builds a tree G, denoted goal hierarchy cache,
that stores the local optima found on each level, as illustrated
in Fig. 1. Each node n ∈ G in this structure is associated
with an HFTS node η(n) ∈ H . The hierarchical structure
of H is transferred to G in the sense that the parent of a
node p(n) ∈ G is the node that is associated with the parent
of η(n). Furthermore, a node n stores all computed robot
configurations Cn for the grasp η(n).



Algorithm 3: SHOULDDESCEND
Input: Hierarchy node np, Child node nc

Output: Decision whether to descend or not.
Constants: Weights wf , wc

1 if nc = ⊥ or nc is leaf then
2 return False

3 if cvr(np) = 1 then
4 return True

5 p← SAMPLEUNIFORM([0, 1])
6 if p ≤ Tp(np)

Tp(np)+Tc(nc)
then

7 return False

8 return True

2) Sampling procedure: With this hierarchy, the goal
sampling algorithm proceeds as shown in Algorithm 2. Each
search for a new goal starts at the root of G, which is
associated with the root of H and is the only initial node in
G. Starting from the root the algorithm proceeds iteratively
to either descend towards a previously cached node, sample
the null space for the grasp of the current node np or
sample a new child node. In each iteration the PICKCHILD
function, Algorithm 4, queries the cache for a child node
from the set of np’s cached children Ch(np). If a child
nc ∈ Ch(np) exists in G, the function SHOULDDESCEND,
Algorithm 3, decides whether the algorithm should descend
to nc or stay at np and sample a new child by calling the
function SAMPLENEWCHILD. If there is no cached child in
G, i.e. Ch(np) = ∅, the algorithm directly samples a new
child. If there are no new children left to sample, the null
space for η(np) is sampled.

3) Sampling a New Child: SAMPLENEWCHILD(np, i)
samples a new goal hierarchy node by performing lo-
cal stochastic optimization of Eq. (1) on the chil-
dren of η(np) that have not been sampled before, i.e.
{h ∈ H | h ∈ δ(η(np)) ∧ 6∃ n ∈ Ch(np) : h = η(n)},
where δ(h) denotes the set of children of h. The number of
iterations i for the optimization depends on the rating T (np)
the parent node achieves. Thus the algorithm spends more
computational effort on promising than on non-promising
grasps.

For the resulting approximate local optimum h∗ an IK
solver is used to search for a robot configuration that at
most collides with the target object at the contacts associated
with the grasp. If such a configuration does not exist due to
environment collisions, a colliding configuration is computed
instead. In either cases, a new cache node nc is created
that stores the found configuration in a set Cnc

. If there
is no kinematic solution, the node is still created, but no
configuration is stored, i.e. Cnc = ∅. In order to allow
the motion planner to connect to configurations in contact,
we modify these by opening the hand by a small angle.
Thereafter, the newly created cache node is saved in the
cache hierarchy G as child of np. If h∗ = η(nc) is a leaf,
the configuration computed for h∗ is collision-free, and h∗

is a stable grasp, the configuration is a goal and returned.
Otherwise, if the configuration is collision-free, we store it
as an approximate goal.

If no goal configuration is found, the algorithm terminates
after κ new configurations were sampled. In our experiments

Algorithm 4: PICKCHILD
Input: Hierarchy node np

Output: Child node nc

Constants: Weights wf , wc, Maximum number of active children Na

1 if |Ch(np)| = 0 then
2 return ⊥

// Re-activate an old child
3 Cha(np)← Cha(np)∪ SAMPLEUNIFORM(Ch(np))
4 while |Cha(np)| > Na do
5 nr ← SAMPLEWEIGHTED(Cha(np), 1

Tc
)

6 Cha(np)← Cha(np) \ {nr}

// Sample an active child with priority to promising
children

7 return SAMPLEWEIGHTED(Cha(np), Tc)

we choose κ slightly larger than the depth of H , which allows
the algorithm to descend to the lowest level of the hierarchy,
while sampling some alternatives. In case the search for a
goal was unsuccessful, an approximate goal is returned.

4) Rating Function t(n): The main purpose of this algo-
rithm is to guide the grasp search towards regions of H that
are promising to fulfill the reachability and connectability
constraint. For this, we rate each node n that is stored in G
by a rating function

t(n) =


max
φ∈Cn

wfe
−Ω(φ) + wce

−Γ(φ) if Cn 6= ∅

cvr(p(n))t(p(n)) if Cn = ∅
wf if n is root

, (4)

where wc, wf ∈ R>0 are weights and Ω(φ) the shortest
distance of φ to the known non-connected and Γ(φ) the
shortest distance to the connected free-space. Hence, the
closer a configuration of a node is to either the non-connected
free-space or the connected free-space, the larger the rating.

In case there is no configuration available for a cached
node n, we assign the rating of the parent p(n) weighted by
the parent’s coverage cvr(n). The coverage for a node n is
the ratio between the number of cached children of the node
and the maximum number of children possible. Hence, for a
node without any configuration the rating is initially very low
and increases as more and more of its siblings are sampled.
The rating for the root node is constant and by definition as
high as the minimal rating of a collision-free node.

Each time the goal sampling algorithm searches for new
goals, G grows and more information on H is available
from previous explorations. Therefore, rather than basing the
rating of a cached node n purely on its own configurations,
we choose to compute a branch rating

T (n) =
1

2
(t(n) +

1

|Cha(n)|
∑

n′∈Cha(n)

T (n′)) (5)

that takes the ratings of the cached descendants of n into
account. Cha(n) denotes the set of active children of n,
which are explained in Sec. III-B.6.

5) Decision on Descent: Given this rating function, the
function SHOULDDESCEND(np, nc) determines whether the
algorithm should descend from a node np to nc or remain at
np and sample a new child. This decision algorithm is shown
in Algorithm 3. In case the child is a leaf node or there is
no cached child available, no descent is made. If in the other



extreme all possible children of np have been sampled, i.e.
cvr(np) = 1, the algorithm descends without further checks.

Otherwise the choice is randomized with the probability
of remaining at the same level being proportional to the
rating Tp(n) = (1 − cvr(n))T (n). On the other hand, the
probability of descending to the child node is proportional
to Tc(n) = (1 − |L(n)|

|̂L(n)|+1
)T (n), where |L(n)| denotes the

number of cached leaves in the branch rooting at n and
|̂L(n)| the maximum number of leaves the branch can have.

The definitions of Tc(n) and Tp(n) aim at balancing
between exploring new regions of H and searching for
new grasps in known promising regions. The probability of
remaining at a node is large, if the rating of the node n
is good and there are many new children left to explore.
If on the other hand, most of the children have already
been explored, the probability decreases as it is unlikely
to find more high quality subbranches. The probability of
descending to a child, in turn, is large if the child achieves
a high rating and there are many unsampled leaves in the
branch left. The more the child branch has been explored,
the smaller the probability of descending becomes. Note
that Tc(n) > 0 at all times, which allows the algorithm to
eventually explore any node if it does not terminate before.

6) Picking a Child: Similar to the decision on descending,
the selection of a candidate child to descend to is made
based on the ratings of the children. The accuracy of our
rating function depends on the degree of exploration of
Cfree. Hence, in early stages, it may assign low ratings to
branches that contain feasible grasps. We therefore need to
ensure there remains a chance of exploring branches with
low ratings. Thus we randomize the procedure, as shown
in Algorithm 4. The probability of a child being selected is
proportional to its rating Tc, i.e. p(nc) = Tc(nc)∑

c∈Cha(np) Tc(nc) .
However, as the number of cached children of a node np
increases, high ratings become less significant as we need
to normalize by the summed ratings of all children. As a
consequence, the chance of the algorithm to descend towards
promising children would decrease the more children a node
has. To compensate for this we distinguish between active
children Cha(np) and inactive children Ch(np) \ Cha(np).
Cha(np) is a limited set of children that is updated every
time the function PICKCHILD is executed by first adding a
random inactive child and then down sampling the set until it
has at most Na elements. The probability of a child nc being
removed from the set of active children is anti-proportional
to its rating Tc(nc). Note also that in Algorithm 2 line 16
any newly sampled child is initially added as an active child.

IV. EXPERIMENTS

We implemented the proposed system in Python using the
OpenRAVE simulation environment [21]. Our virtual robot is
a model of the KUKA KR5 sixx 850 arm with da = 6 DoFs
in combination with a Schunk-SDH hand with dh = 7 DoFs,
making a total dimension of d = 13. The Schunk-SDH hand
has three fingers and accordingly we plan 3-contact fingertip
grasps on the Hierarchical Fingertip Space. All experiments

Fig. 4: The three test environments, the different test objects and example
grasps with approach paths.

were run on a machine with an Intel Core i7-4790K CPU
@ 4.00GHz×4 and 16GB RAM running Ubuntu 14.04. The
parameters used in our experiments are shown in Fig. 6.

We evaluate the presented algorithm in the three different
environments shown in Fig. 4 for different object poses. In
each environment the robot is tasked with grasping various
objects of different sizes and shapes that are surrounded by
obstacles. Following the definition in [8], the HFTSs of all
objects have the structure 20−4−4 resulting in respectively
203, 43, 43 number of children per node on each level. As
can be seen in Fig. 4 as well as in the accompanying video,
our algorithm successfully computes fingertip grasps as well
as motion plans towards these.

In order to evaluate the performance of our algorithm, we
compare it to a decoupled integration of the HFTS fingertip
grasp planner. In this decoupled version we replace our goal
sampling algorithm with the algorithm described in Sec. II-
A, which simply optimizes Eq. (1) without considering the
reachability nor the connectability constraint.

Fig. 5 shows the explored HFTS subspace for both algo-
rithms for two typical planning instances on the same test
case. As it can be seen, the decoupled version is generally
required to explore a significantly larger portion of the search
space until it finds a grasp for which a motion plan is found.
In fact, in many planning instances the decoupled algorithm
only finds very few different grasps. In contrast, our coupled
algorithm typically explores a significantly smaller portion
of the HFTS space and finds more feasible solutions. As it
can be seen in Fig. 5 our algorithm is more conservative than
the decoupled version and only descends in the hierarchy, if
the rating function indicates a branch is promising.

As a consequence we expect our algorithm to be in average
faster than the decoupled version. In order to evaluate
this, we execute both algorithms on all environments 150
times per object with a time limit of 60s. Our algorithm
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Fig. 5: The explored HFTS of an example execution of the decoupled (top)
and our coupled algorithm (bottom). Our algorithm generally explores a
smaller portion of the HFTS than the decoupled algorithm. In the top
hierarchy the colored node is the only node associated with a feasible grasp.
In the bottom the colors and numbers indicate the rating of the respective
nodes. In contrast to the decoupled algorithm our algorithm only explored
6 leaves, of which 1 was a feasible grasp that was successfully connected
to the forward tree.
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Fig. 6: The chosen values for the different parameters.

Fig. 7: The planning success rate as a function of planning time, which
can be interpreted as a chance of planning success. The shaded areas show
the Wilson confidence interval. DI: Decoupled integration with 20, 60, 100
iterations respectively.

dynamically adjusts the number of iterations i in the function
SAMPLENEWCHILD in an interval [imin, imax]. For this
interval we choose imin = 20 and imax = 100. In contrast to
this, the decoupled algorithm performs a constant number of
iterations per level. Therefore, for comparison we evaluate
the decoupled algorithm for i = 20, 60, 100 iterations. In
total we ran 4200 tests for each of these four algorithm
configurations.

A. Planning Success Rate

For each test we record the runtime needed to successfully
compute a solution or whether no solution is found within
the time limit. As a result, we compute the ratio of successful
tests as a function of planning time, which is shown in Fig. 7.
As the runtime increases, more planning instances terminate
successfully. The success rate of our algorithm dominates the
success rate of all configurations of the decoupled algorithm,

Fig. 8: Absolute number of HFTS nodes explored (GNS). DI: Decoupled
integration with 20, 60, 100 iterations respectively. The black bars show the
standard error.

achieving a maximum success rate of 0.85 at a total planning
time of 60s. In contrast, the decoupled algorithm achieves
at most a final success rate of 0.8 for i = 20 iterations. For
i = 60 and i = 100 the success rates are significantly worse.
As a consequence the average runtime of our algorithm is
26s, whereas the average runtime of the decoupled method
is 30s, 38s, 45s for i = 20, 60, 100 respectively. Note that
the decoupled method performs worse, the more expensive
the grasp planning process is.

B. HFTS Exploration & Goal Planning Success
A low number of iterations allows the decoupled algorithm

to explore more of the HFTS search space within the limited
time budget. As there are fewer iterations on each level, the
algorithm proceeds quicker to the bottom of the hierarchy.
Consequently, we observe that the average number of HFTS
nodes explored is the highest for the decoupled algorithm
with i = 20 as shown in Fig. 8. The larger amount of
explored HFTS nodes increases the chance of finding a grasp
that is reachable and connectable by the motion planner.

In comparison, our method requires generally less explo-
ration of the HFTS to find a reachable high quality grasp.
Not only is the average number of explored HFTS nodes
smaller, but also the chance of the goal sampler to compute a
reachable grasp is significantly higher than for the decoupled
method. This can be seen in Fig. 9, which shows the ratio
between the number of times the goal sampler finds a valid
goal configuration and the number of times the motion
planning algorithm calls the goal sampler. This ratio can be
interpreted as the chance of the respective goal sampling
method to find a reachable solution. As the results show,
this chance is the highest for our method for all objects.
This indicates that our rating function successfully guides
the goal sampling algorithm towards HFTS regions that are
more likely to be reachable.

Interestingly, while all computed grasps are stable with
respect to Canny-Ferrari’s grasp quality, we do not observe
any significant difference in grasp quality between all the
methods with any number of iterations. This indicates that
there are only few stable grasps reachable in our test envi-
ronments, which achieve similar qualities.

V. DISCUSSION & CONCLUSION

In this work, we have presented an algorithm framework
that is capable of simultaneous motion and grasp planning.



Fig. 9: The ratio between number of valid goal samples (VGS) and number
of goal sample calls (GS). DI: Decoupled integration with 20, 60, 100
iterations respectively. The black bars show the standard error.

The motion planning is performed on all DoFs of the robot,
relieving us from defining any type of approach primitives.
The contact based grasp planning allows us to purposefully
search for stable fingertip grasps. In contrast to a decoupled
integration, we showed that we can utilize the hierarchical
nature of the grasp search to efficiently guide the algorithm
towards regions of the HFTS that are likely to fulfill the
reachability and connectability constraints. Our experimental
evaluation showed that our method outperforms the decou-
pled integration in terms of average runtime, leading to a
higher chance of planning success within a limited time
frame. This improvement is particularly significant when the
grasp computation is computationally expensive. Therefore,
in future work we plan on evaluating our method on different
hands with more fingers.

The rating function t(n) we use for guiding the goal
sampling is based on the proximity to known configurations
in Cfree or Tf ⊂ Cfree. Hence, the degree to which the
rating is informative strongly depends on the current state of
exploration of Cfree. This makes the rating function in the
beginning of the search not very informative. In future work,
we plan to investigate alternative rating functions. In particu-
lar, we plan to investigate the usage of trajectory optimization
methods [22]–[24] as relaxation for both constraints. These
in combination with Bayesian optimization techniques [25]
could be a promising alternative to our approach.

While the presented work focuses on integrating fingertip
grasp with motion planning, we believe we can apply our
framework to different applications. The framework makes
few grasping related assumptions and requires only a hier-
archical goal search space. One such potential application
is placement planning, where a robot is tasked with placing
an object safely in a cluttered environment. Furthermore, the
framework could easily be extended to different varieties of
bidirectional sampling-based motion planners such as [26]
or applied to different grasp objective functions that, for
instance, respect task constraints.
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