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Abstract— We address the problem of planning the placement
of a rigid object with a dual-arm robot in a cluttered environ-
ment. In this task, we need to locate a collision-free pose for the
object that a) facilitates the stable placement of the object, b) is
reachable by the robot and c) optimizes a user-given placement
objective. In addition, we need to select which robot arm to
perform the placement with. To solve this task, we propose
an anytime algorithm that integrates sampling-based motion
planning with a novel hierarchical search for suitable placement
poses. Our algorithm incrementally produces approach motions
to stable placement poses, reaching placements with better
objective as runtime progresses. We evaluate our approach for
two different placement objectives, and observe its effectiveness
even in challenging scenarios.

I. INTRODUCTION

Pick-and-place is among the most common tasks robot
manipulators are applied for today. Grasp planning, which is
the process of autonomously selecting grasps, still receives
much attention and effort from the robotics community [1]–
[3]. In contrast, the problem of placement planning, which
is the process of autonomously deciding where and how to
place an object with a robot, has received considerably less
attention.

An autonomous robot tasked with placing a grasped
object can generally not assume to know the environment
in advance, rather it faces the following challenges when
perceiving the environment for the first time:

1. It needs to identify suitable locations that afford plac-
ing. For instance, an object may be placed flat on a
horizontal surface, leaned against a wall, placed on a
hook, or laid on top of other objects. Determining how
and where a particular object can be placed, requires
analysis of both the environment’s and the object’s
physical properties.

2. It needs to be able to reach the placement. Placing
requires the robot to move close to obstacles, which
make it difficult to compute collision-free arm configu-
rations reaching a placement. In addition, the obstacles
render planning an approach motion computationally
expensive.

3. Not all placements are equally desirable. For many
tasks, there exists an objective such as stability, human-
preference on location, or clearance from other obsta-
cles that is to be maximized.
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Fig. 1: Our algorithm computes placements for objects as well
as corresponding approach motions in cluttered environments. In
addition, it optimizes a user-specified objective for the placement
pose. In the top row are example placements produced by our
algorithm for a wine glass and toy table (green) under the objective
to maximize clearance from other objects. In the bottom row a small
and a large crayons box (green) are placed under the objective to
minimize clearance.

This work’s contribution is an algorithmic framework that
addresses these challenges. Our main focus lies on comput-
ing reachable placement poses (challenge 2) that maximize
a user-specified objective (challenge 3). In particular, we
consider placing with a dual-arm robot in difficult to navigate
environments, such as shelves and cluttered tabletops, Fig. 1.
Our approach addresses challenge 2 under the consideration
of different robot arms by integrating a motion planning
algorithm with a novel hierarchical search for a placement
pose. We address challenge 3 by designing the algorithm
such that it finds an initial feasible solution quickly, and
then incrementally improves the user-specified objective in
an anytime fashion.

II. RELATED WORKS

Previous works on placing objects predominantly focus
on challenge 1, i.e. searching poses in the environment,
where an object can rest stably. A naı̈ve solution consists
of identifying horizontal surfaces in the environment and
placing the object flat on the surface where there is enough
space. This technique is, for instance, commonly employed
in manipulation planning works which focus on planning
complex sequences of pick-and-place operations rather than
individual placements [4]–[8].

The object’s orientation for a horizontal placement can be
obtained by analyzing the object’s convex hull and extracting
the faces that support a stable placement [7], [8]. Each of
these faces gives rise to a base orientation when aligned



with the support surface. Different poses with the same base
orientation can be obtained by translating the object along the
surface and rotating it around the surface’s normal. To locate
collision-free and reachable placement poses (challenges 1
and 2) rejection sampling using a collision-checker and in-
verse kinematics solver is often employed. This is sufficiently
efficient, if there are few obstacles and most sampled poses
are within reach. If this is not the case, however, a more
efficient sampling strategy, such as the one presented in this
work, is required.

A more complex approach to locating placement poses
(challenge 1) has been proposed by Harada et al. [9]. The
approach locates placement poses by matching planar surface
patches on the object with planar surface patches in the
environment. This allows the approach to locate placements
on large, flat surfaces, but also less obvious placements such
as a mug hanging on a flat bar. While the work also integrates
this algorithm with a motion planner (challenge 2), it does
not perform any optimization of an objective (challenge 3).

Locating placement poses (challenge 1) has also been
addressed using data-driven methods. Schuster et al. [10]
train a classifier to segment a point cloud of a tabletop into
clutter and support surfaces. Similarly, Jiang et al. [11] train a
classifier to score the placement suitability of candidate poses
based on 3D point-clouds of the object and the environment.
The classifier evaluates physical feasibility, stability, as well
as human placement preference. This enables the approach
to produce a variety of placements, such as a plate standing
in a dish-rack, a mug hanging on a bar, or a box laying on
a flat surface. In order to evaluate the classifier, however,
the approach requires a set of reachable candidate poses.
Obtaining these in cluttered environments is non-trivial,
as random sampling, for instance, has low probability of
sampling good candidates.

Ensuring that a collision-free approach motion to a place-
ment exists (challenge 2) requires us to closely integrate
the placement search with a motion planning algorithm.
This relates our problem to integrated grasp and motion
planning [12]–[16]. These works present algorithms that
simultaneously compute grasps with corresponding approach
motions. The works demonstrate that in cluttered environ-
ments separate planning of grasps and approach motions is
inefficient, due to collisions or the limited reach of the robot.

Our work addresses the analogous challenge for placing
(challenge 2), with the addition of optimizing an objective
function on the placement (challenge 3). We follow a similar
idea as our prior work on integrated grasp and motion plan-
ning [12] and use a hierarchical sampling algorithm to better
cope with the presence of clutter. Regarding challenge 1, we
follow aforementioned previous works and place objects on
horizontal support surfaces.

III. PROBLEM DEFINITION

We consider a dual-arm robot equipped with two manip-
ulators, A = {a1, a2}, that is tasked to place a rigid object
o in a user-defined target volume V ⊂ R3. We assume that
the object can be grasped by either arm with a grasp known

a priori, and it’s the algorithm’s task to choose which arm
to place with. The target volume V is a set of permitted
positions for the object o, and restricts the search space for
placement poses to X o = V × SO(3) ⊂ SE(3). Obviously,
not all poses in X o facilitate a stable placement, since for
many of these the object might be, for example, in midair or
intersecting obstacles. We denote the constraint that a pose
x ∈ X o facilitates the stable placement of the object as
binary mapping cs(x), that is 1 if x is a stable placement
and 0 otherwise. Additionally, we denote the constraint that a
pose x is physically feasible, i.e. that there is no intersection
of the interior of the object with any obstacle, as binary
predicate cf (x).

A placement pose must be reachable by the robot. For
this, let Ca = Cafree ·∪ Caobst denote the configuration space of
arm a ∈ A, and let O(q) : Ca → SE(3) denote the pose
x ∈ SE(3) of the object when grasped with arm a in con-
figuration q ∈ Ca. We say a pose x ∈ X o is path-reachable,
cr(x) = 1, if for some arm a ∈ A there exists a known
collision-free continuous path τ : [0, 1] → Cafree starting from
the initial configuration of the robot τ(0) = q0 ∈ Cafree
and ending in a configuration τ(1) = qg ∈ Cafree such that it
reaches x, i.e. O(qg) = x.

With these constraints and a user-provided objective func-
tion ξ : X o → R, we formalize our task as the following
constrained optimization problem:

maximize
x∈Xo

ξ(x)

subject to cf (x) = 1

cs(x) = 1

cr(x) = 1

(1)

Independently of the objective function, the optimization
problem is challenging to solve due to the constraints.
The collision-free constraint, cf (x), renders the problem
non-convex. The stability constraint, cs(x), is difficult to
model, as it is a function of the physical properties of
the object and the local environment. Lastly, the path-
reachability constraint, cr(x), requires a motion planning
algorithm to compute an approach path, which is generally
computationally expensive.

Note that after releasing an object at a placement pose,
the robot might not be able to retreat without colliding
with the placed object. Hence, in principle, there is the
additional constraint that a collision-free retreat motion must
be possible. In this work, however, we choose to exclude this
constraint from our problem definition and instead assume
that a collision-free retreat is always possible.

Assumptions on prior information: We assume access
to the kinematic and geometric model of the robot, the
geometry of the object, the location of its center of mass, and
the geometry of the environment in form of surface points
S ( R3. Furthermore, we assume that the environment is
rigid, and that gravity acts antiparallel to the z-axis of the
world’s reference frame. Let gT ao ∈ SE(3) for a ∈ A denote
the grasp transformation matrices from the object’s frame to
the respective gripper frames. We assume that these grasps
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Fig. 2: Our approach consists of two stages. In a pre-processing stage we first extract placement contact regions and faces that help locating
us stable object poses. In the optimization stage a sampling algorithm is employed to locate kinematically reachable and collision-free
stable placement poses. These are provided to a motion planning algorithm to verify path-reachability and construct an approach motion.
Subsequently a local optimization algorithm is employed to improve the placement locally. Any found solution is made available to the
user, and subsequent iterations search for better solutions.

are selected such that a stable placement pose can be acquired
without releasing the object.

For a pose x ∈ SE(3), let px = (x, y, z) ∈ R3 be its
position and ox = (ex, ey, ez) its orientation expressed in
rotation angles around the world’s x, y and z axis respec-
tively. Our algorithm treats the objective function ξ(x) as a
black-box. If ξ is differentiable w.r.t. the x, y, ez components
of x, however, we obtain these partial derivatives numerically
and exploit them for local optimization.

IV. METHOD

We address the problem in Eq. (1) with the algorithmic
framework shown in Fig. 2. The framework receives the
information listed on the left as input and produces paths
τi : [0, 1] → Cafree, each associated with an arm a ∈ A, as
output. The final configuration of each path τi(1) represents
a placement solution using a particular arm, and places
the object at a stable and collision-free placement pose
x = O(τi(1)).

The framework consists of a pre-processing stage and
an optimization stage. The pre-processing stage analyzes
the world and object geometry to extract surface infor-
mation for potential placements. The optimization stage
operates in an anytime fashion and iteratively produces
new paths τi that reach placements with better objective
ξi = ξ(O(τi(1))) > ξj than the previous paths τj , j < i.

The base idea of our approach is to decompose the
problem in Eq. (1) into a search for feasible placement poses
that fulfill all constraints, and only subsequently optimize
the objective. In general, we can not model all constraints
in Eq. (1) in closed form. However, for a particular pose
x ∈ X o we can verify whether it fulfills the constraints.
Therefore, the optimization stage operates in a sampling-
based manner. For each constraint in Eq. (1) our framework
has one component designed to verify it, or to provide
samples from its satisfying set:

Stable placement. A necessary condition for a pose
x ∈ X o to be stable, cs(x) = 1, is that the object is
in contact with the environment. In the pre-processing stage,

we therefore extract surfaces in the target volume and on the
object that afford placing. With these surfaces we obtain an
approximation Ŝ ⊂ X o of the set of stable placement poses
that serves as search space for our optimization.

Physically and kinematically feasible placement. Within
the set Ŝ we need to locate object poses that are physically
feasible, cf (x) = 1. In addition, we need to verify that these
poses can be reached by collision-free arm configurations
q ∈ Cafree for at least one arm. Sampling of such poses
x ∈ Ŝ, and verification of cf (x) and cs(x) is performed in
the optimization stage in a subprocess that we refer to as
goal sampling.

Reachable placement. To verify path-reachability of sam-
pled candidate poses, cr(x) = 1, we need to construct
approach paths to them. For this, the optimization stage em-
ploys sampling-based motion planning [17] towards the arm
configurations computed by the goal sampling algorithm.

Preferred placement. The actual optimization of the ob-
jective function is achieved through two concepts. First, we
employ a greedy local optimization algorithm on the poses
that have been verified to satisfy all constraints. Second,
whenever an approach path to a new placement pose x
has been found, we constrain subsequent iterations of the
algorithm to only consider poses x′ that achieve a better
objective ξ(x′) > ξ(x).

A. Pre-processing: Defining Potential Contacts

Modeling the set S = {x ∈ X o | cs(x) = 1} of stable
placement poses is challenging, due to the large variety of
possible placements. We approximate this set by the set of
poses at which the object is placed on horizontal surfaces.
For this, we extract a discrete set of placement contact
regions, R = {ri}i=mi=1 , ri ⊂ S ∩ V ( R3, from the surface
geometry S in the target volume V . A placement contact
region is a contiguous set of surface points that share the
same height, see Fig. 3. In our implementation, we extract
these from an occupancy grid of the environment. Other
techniques, however, could also be employed.
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Fig. 3: Placement faces and contact regions. Left: We extract
contiguous horizontal surfaces in the environment that provide us
with contact locations to place the object on. Right: The Stanford
bunny model is shown with its convex hull and two of the hull’s
faces are highlighted. The green face is a placement face, as the
projection of the center of mass (red) along the faces’ normal
falls into the face. This is not the case for the purple face. To
align the object with a horizontal contact region, we define for
each placement face a transformation matrix fT o that describes
the object frame relative to a frame rooted at a reference vertex
with the face’s normal as z-axis.

To determine the orientation in which the object should
make contact, we extract contact points from the object’s
surface. We follow a similar approach as in aforementioned
works [7], [8] and select faces from the object’s convex hull
to place the object on. The convex hull of a point cloud of
the object is a convex polyhedron. A face of this polyhedron
supports a stable placement on a horizontal surface, if the
projection of the object’s center of mass along the face’s
normal falls into this face, see Fig. 3. We refer to the k ∈ N
number of faces for which this is the case as placement faces,
F = {fi}i=ki=1 .

Each placement face is a polygon, and only its vertices are
guaranteed to be part of the object’s actual surface. For each
face f ∈ F , we select one of these vertices as reference
contact point and define a transformation matrix fT o as
shown in Fig. 3. With this, the combination of a placement
contact region r ∈ R and a placement face f ∈ F defines a
class of object poses

Ŝ(r, f) = {T
(
Rz(θ),

(
x
y
zr

))
fT o |

(
x
y
zr

)
∈ r, θ ∈ [0, 2π)},

where zr is the z-coordinate of the placement contact region,
Rz(θ) the rotation matrix around the z-axis by angle θ, and
T (·, ·) an operator that combines a translation vector and
rotation matrix to a transformation matrix.

The poses in Ŝ(r, f) vary in x, y translation within the
contact region r and rotation by θ around the z-axis going
through f ’s reference contact point located at x, y, zr. For
all poses in Ŝ(r, f) the reference contact point is guaranteed
to be in contact. Depending on the size of f and r, the
other vertices are also likely in contact but contact is not
guaranteed. Therefore, when sampling Ŝ(r, f) we need to
verify stability of the sampled poses by ensuring that the
remaining vertices are also in contact. Here, it is sufficient for
these vertices to contact any placement contact region r ∈ R,
allowing placements where an object bridges a gap between
regions. Finally, the union Ŝ =

⋃
r∈R,f∈F Ŝ(r, f) of all

Ŝ(r, f) constitutes a parameterized approximation of S, that
serves as our search space for feasible placements.

Algorithm 1: Optimization stage
1 Ms, Gs ← ∅, ∅ // Storage of internal state
2 τ, ξbest,G ← ⊥,−∞, ∅
3 while not TERMINATE()
4 Gnew, Gs ← SAMPLEGOALS(gmax, ξbest, Gs)
5 G ← G ∪ Gnew
6 if |G| > 0
7 τ,Ms ← PLANMOTION(mmax,G,Ms)
8 if τ 6= ⊥
9 τ ← OPTIMIZELOCALLY(τ )

10 τbest ← τ
11 ξbest ← ξ(O(τ(1)))
12 Go = {g ∈ G|ξ(O(g)) ≤ ξbest}
13 G = G \ Go
14 publish τbest, O(τbest(1))

15 return τbest, O(τbest(1))

B. Sampling-based Optimization
The optimization stage is formalized in Algorithm 1.

The algorithm alternates between executing the sub-
algorithms SAMPLEGOALS, PLANMOTION and OPTIMIZE-
LOCALLY until termination is requested by the user.
In each iteration, SAMPLEGOALS samples Ŝ to com-
pute a finite set of collision-free arm configurations
Gnew = {(q, a) | a ∈ A, q ∈ Cafree} reaching the
sampled poses. For each returned q ∈ Gnew the stability
constraint, cs(O(q)) = 1, and the physical feasibility con-
straint, cf (O(q)) = 1, at the respective object pose x = O(q)
are satisfied. Furthermore, the placements achieve a better
objective than the best solution found so far, ξ(O(q)) > ξbest
for all q ∈ Gnew. Initially, ξbest is set to −∞ and is updated
as the algorithm succeeds at verifying path-reachability of
placements.

In each iteration, the algorithm stores all sampled goals
with an objective greater than ξbest in a set G. This set is
provided as goal set to a motion planner in PLANMOTION.
Whenever this algorithm succeeds at computing a new path,
OPTIMIZELOCALLY is executed to improve the solution
locally. Subsequently ξbest and G are updated accordingly.

SAMPLEGOALS and PLANMOTION receive parameters
gmax, Gs,mmax,Ms respectively. The presence of the param-
eters Gs,Ms emphasizes that both sub-algorithms maintain
an internal state across all iterations of the algorithm. This is
crucial for the efficiency of the overall approach and will be
detailed in the following sections. The parameters gmax,mmax
limit the computation time budget for each function, to
balance the computational burden of sampling new goals and
planning paths.

C. Goal sampling
The function SAMPLEGOALS needs to solve a constraint

satisfaction problem:
find a ∈ A, q ∈ Ca

such that ξ(O(q)) > ξbest

cs(O(q)) = 1

cf (O(q)) = 1

q ∈ Cafree

(2)

This subproblem by itself is challenging to solve. Given the
approximate parameterized set Ŝ, we could employ uniform



Fig. 4: The AFR-hierarchy consists of two different parts. On the
first three level, the hierarchy represents choices of an arm a ∈ A, a
placement face f ∈ F and a region r ∈ R. On the level at greater
depths, the hierarchy recursively subdivides the region r and the
range of orientations [θ̌, θ̂) within a pose set Ŝ(r, f)

sampling of Ŝ and reject invalid samples using an inverse
kinematics solver and collision checker. This, however, can
be rather inefficient in the presence of obstacles, where the
probability of randomly sampling a collision-free object pose
x and arm configuration q ∈ Ca reaching x is low. We
remedy this by employing a sampling procedure that adapts
its sampling and focuses on regions of Ŝ that are likely to
satisfy all constraints.

1) AFR-Hierarchy: Sampling a pose from Ŝ involves
choosing a placement contact region r ∈ R and a face
f ∈ F . In addition, to compute an arm configuration
reaching a sampled pose, we need to select an arm a ∈ A.
While there is an overlap between the poses that each
arm can reach, some may be more easily reached by one
than the other. Whether a particular placement face f is a
good choice to place the object on depends on the grasp,
and thus on the arm that is selected. Similarly, whether a
placement contact region allows a stable and penetration-
free placement strongly depends on the placement face, as
this determines the footprint and the base orientation of the
object. Furthermore, if a pose x ∈ Ŝ(r, f) for a particular
region r and face f is reachable by an arm a, it is likely
that poses in close proximity are also reachable by the arm.
Hence, there exists a spatial correlation of feasibility within
a set Ŝ(r, f), as well as between different sets of Ŝ(r, f)
with similar categorical choices for r ∈ R, f ∈ F and arms
a ∈ A.

This observation leads us to the definition of the AFR-
hierarchy shown in Fig. 4. On the first level of this hierarchy,
an arm a ∈ A is selected, on the second level a placement
face f ∈ F , and on the third a placement contact region
r ∈ R. From the third level on, each node in the hierarchy
defines all quantities that we require to sample poses and
compute arm configurations. Subsequent level of the hier-
archy recursively partition the sets Ŝ(r, f), and every node
represents a subset of the Ŝ(r, f) it descends from.

Let n = (a, r, f, θ̌, θ̂) denote a node at level i ≥ 3. The
values a, r, f denote the arm, the placement face and the
placement contact region the node n is associated with. The

Algorithm 2: SAMPLEGOALS: Sampling algorithm
based on Monte Carlo tree search

Input: Number of maximal iterations gmax, best achieved objective
value ξbest, state storage Gs

Output: Feasible placement configurations Gnew, state storage Gs

1 Gnew ← ∅
2 for i← 1, . . . , gmax
3 n← SELECTAFRNODE(Gs)
4 x← SAMPLE(n)
5 if cs(x) = 1 ∧ cf (x) = 1 ∧ ξ(x) > ξbest
6 q ← IKSOLVER(x, an)
7 if q ∈ Can

free
8 Gnew ← Gnew ∪ {(q, an)}

9 UPDATE(n,Gs,x, q, ξbest)

10 return Gnew, Gs

values θ̌, θ̂ define a range of orientations [θ̌, θ̂) ⊆ [0, 2π)
around the z-axis. On level i = 3, it is θ̌ = 0 and θ̂ = 2π
and the nodes represent the full Ŝ(r, f) for the respective
regions and faces. For nodes at level i > 3, the interval
[θ̌, θ̂) ⊂ [0, 2π) defines a subset of orientations, and r denotes
only a subset of the original contact region of its ancestor at
level i = 3. On any level i ≥ 3, the children of a node n arise
from partitioning its region r and interval [θ̌, θ̂). The region
r is divided into four subregions r = r(1) ∪ r(2) ∪ r(3) ∪ r(4)
by splitting it along its mean x and y positions. The interval
[θ̌, θ̂) is split into four equally sized sub-intervals. The 4× 4
children of n then result from combining each subregion
with each interval of orientation angles. This subdivision
is recursively continued until some user-specified minimal
region area and orientation range.

2) Goals Sampling with Monte Carlo Tree Search: To ob-
tain samples that satisfy Eq. (2), we exploit the spatial corre-
lation modeled by the AFR-hierarchy, and employ a sampling
algorithm based on Monte Carlo tree search (MCTS) [18].
The algorithm is shown in Algorithm 2 and Algorithm 3,
where Algorithm 2 is the SAMPLEGOAL procedure called
by Algorithm 1.

The key idea of the algorithm is to incrementally construct
a tree of nodes in the AFR-hierarchy, and store for each node
the proportion of valid samples obtained from its subbranch.
This information is then used to focus sampling on branches
of the hierarchy that are likely to contain more valid samples
while maintaining some exploration. The tree is stored in
the variable Gs, and thus steadily constructed across all
executions of SAMPLEGOAL in Algorithm 1.

Every time Algorithm 2 is executed, it attempts to produce
gmax goal samples (q, a), q ∈ Cafree, a ∈ A. For each sample,
the algorithm first selects a node n from the AFR-hierarchy
using Algorithm 3. Algorithm 3 ensures that this node fully
specifies a set Ŝ(r, f) or a subset thereof. It then randomly
samples a pose x from this set and evaluates whether the
pose constraints cf (x), cs(x) and ξ(x) > ξbest are fulfilled.
If this is the case, it employs an inverse kinematics solver
to compute an arm configuration q ∈ Can for the arm an
specified by the AFR node n. If such a configuration exists
and it is collision-free, a new goal has been obtained and
can be provided to the motion planning algorithm.

Tree maintenance: After each sample step, the tree stored



in Gs is updated according to whether we successfully
obtained a new goal sample or not. For each sampled node
n, we store the following information in Gs:

• v(n), the number of samples obtained from n or any of
its descendants,

• r(n), the sum of all rewards obtained for sampling n
or any of its descendants,

• Ch(n,Gs), the children of n that have been added to
Gs.

The numbers v(n) and r(n) are updated by the UPDATE
function, whereas Ch(n,Gs) is updated within Algorithm 3.

After sampling n we obtain a reward

∆r(n) =


H(x, q, ξbest) if n is not a leaf of AFR
1 if cξ(x, ξbest) = 1 ∧ cf (q) = 1

0 otherwise,
(3)

where cf (q) = 1 if q ∈ Cafree, and cξ(x, ξbest) = 1, if
cs(x) = cf (x) = 1 and ξ(x) > ξbest. This reward is binary,
if n is a leaf of the AFR-hierarchy and there are no further
subdivisions of the pose set. If n is not a leaf, the reward
is a heuristic value H(x, q, ξbest) ∈ [0, 1] that also rewards
samples only satisfying some of the constraints. In any case,
the reward is recursively propagated to n’s ancestors, n′, to
update their respective v(n′), r(n′). The number of samples,
v(n′), is always increased by one as we acquired a single
sample, whereas the accumulated reward r(n′) is updated by
the reward ∆r(n) obtained at the sampled node n.

Tree exploitation and extension: The decision on which
node to sample is made in the SELECTAFRNODE function,
Algorithm 3. The algorithm always starts at the root of the
AFR-hierarchy and descends to a node in the hierarchy that
it decides to sample. Since we can produce samples only for
nodes at depths i ≥ 3, the algorithm always needs to descend
at least to depth 3 before returning any node. For nodes n at
depth i > 3 the algorithm descends to its children, as long
as n is not a leaf and has been sampled before.

Initially, Gs only contains the root of the AFR-hierarchy.
Hence, the only option the algorithm has is to select a
child in the AFR-hierarchy that is not in Gs yet. This is
done by the ADDCHILD operation, which selects a random
child from the AFR-hierarchy and adds it to Gs. Let n
now be any selected AFR-node that is already stored in
Gs. We distinguish between its children Ch(n,Gs) that
are also stored in Gs and its total set of children Ch(n)
as defined by the hierarchy. If n has children in Gs, the
algorithm may either descend to one of them, or add a
new child to Gs, if |Ch(n,Gs)| < |Ch(n)|. The decision
on what to do is based on the UCB1 policy [19], which is
common to employ in Monte Carlo tree search and shown
in Algorithm 3. It allows the algorithm to balance between
re-sampling branches (exploitation) that have led to valid
samples before and exploring new branches. The score u′ for
adding a new child is based on the conservative assumption
that any unsampled node is as good as the average of its
siblings.

Algorithm 3: SELECTAFRNODE: Selecting which
AFR-node to sample

Input: State storage Gs

Output: node n in Gs that defines a tuple (a, f, r, θ̌, θ̂)
1 Function SELECTCHILD(n,Gs)
2 for i ∈ Ch(n,Gs)

3 ui ← r(i)
v(i)

+ c
√

2 ln(v(n))
v(i)

4 u′ ← −∞
5 if |Ch(n,Gs)| < |Ch(n)|
6 u′ ← 1

j

∑j
i=1

r(i)
v(i)

+ c
√

2 ln(v(n))
j

7 if ∀i ∈ Ch(n,Gs) : u′ > ui ∨ |Ch(n,Gs)| = 0
8 return ADDCHILD(n,Gs)

9 return arg max
i∈Ch(n,Gs)

ui

10 n← ROOT(Gs)
11 for d← 1 . . . 3
12 n← SELECTCHILD(n,Gs)

13 while v(n) > 0 ∧ ¬ISLEAF(n)
14 n← SELECTCHILD(n,Gs)

15 return n

D. Motion Planning

The subalgorithm PLANMOTION plans motions for each
arm separately, as we assume that only one of the arms is
used to perform the placement, while the other arm remains
in a resting position. In principle, any motion planning
algorithm could be employed for this subalgorithm. The only
requirement on the algorithm is the possibility to efficiently
add and remove goal configurations from the goal set G,
desirably without loosing information, e.g. samples in a
search tree, that could be beneficial for planning paths to
future goals.

In our implementation, we employ a modification of
OMPL’s [20] bidirectional RRT algorithm [21]. The algo-
rithm constructs a single forward tree and one backward tree
for each goal in G. It maintains these search trees throughout
all iterations of Algorithm 1. Whenever the RRT algorithm
succeeds in connecting the forward tree with a backward tree,
the two trees are merged and success is reported. When G is
modified, the backward trees rooting in goal configurations
that have been removed are kept, as they may still prove
valuable to reach other goals. When connecting to any of
these, however, the algorithm no longer reports success and
only merges it into the forward tree.

E. Local Optimization

If the objective function ξ is differentiable w.r.t x, y, ez ,
we exploit its gradient to locally optimize the placement that
a solution path τi reaches. For this, let q = τi(1) be the
final configuration of the path that reaches a placement pose
O(q) = x. We can locally improve the solution using the
following update rule:

∆q ← J†v(
∂ξ

∂x, y, ez
(O(q)))

q ← q + µ∆q,

where J† is the pseudo-inverse of the arm’s Jacobian at q,
µ ∈ R>0 a step size, and v(x, y, θ) = (x, y, 0, 0, 0, θ)T
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(d) Average optimization performance for all objects
when minimizing clearance in scene 1.
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(e) Average optimization performance for all objects
when minimizing clearance in scene 2.
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(f) Average optimization performance for all objects
when minimizing clearance in scene 3.
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(g) Average optimization performance for all objects
when maximizing clearance in scene 1.

0 20 40 60 80 100 120
Runtime (s)

min

max

O
bj

ec
ti

ve

MCTS sampler
MCTS sampler, no local optimization
Uniform sampler
Uniform sampler, no local optimization

(h) Average optimization performance for all objects
when maximizing clearance in scene 2.
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(i) Average optimization performance for all objects when
maximizing clearance in scene 3.

Fig. 5: Experiment scenes and optimization performance of different variants of our algorithm. In scene 1 and 3 the target volume
encompasses the interior of the cabinet (|V | = 0.13m × 0.42m × 0.29m); in scene 2 the volume covers most of the table surface
(|V | = 0.8m× 0.49m× 0.2m). The plots in (d) - (i) show the average optimization performance across all test objects achieved by each
algorithm variant. The plots show the mean objective value as a function of planning time. The shaded area shows the standard error of
the mean. In order to make the objective values comparable, we normalize the achieved objective values for each scene and object into
the range of minimal and maximal objective observed throughout all executions.

lifts the three dimensional gradient to a six dimensional end-
effector velocity. As long as the updated q is collision-free
and O(q) is not violating any constraints, we append the
new configuration to the path τ , and thus obtain an improved
feasible solution.

V. EXPERIMENTS

We implemented our approach in Python using Open-
RAVE [22] and the Open Motion Planning Library [20]. We
evaluate the algorithm in three environments with different
degrees of clutter for four objects, see Fig. 1 and Fig. 5. The
objects differ in size, shape and number of placement faces.
As robot we employ ABB’s dual-arm robot Yumi, where
each arm has 7 DoFs. For the AFR-hierarchy we choose a
minimal placement contact region area of 0.005m×0.005m,
and minimal orientation interval of 0.025rad. The MCTS
sampler uses an exploration parameter of c = 0.5 and the
reward heuristic H(x, q, ξbest) = 1

4 [cf (q) + cs(x) + cf (x) +
cξ(x, ξbest)], where cf (x), cs(x), cf (q), cξ(x, ξbest) are the
binary constraint indicators used throughout Sec. IV. All

experiments were run on an Intel Core i7-4790K CPU @
4.00GHz×4 with 16GB RAM.

As objective functions we employ two variations of clear-
ance to obstacles. We define the clearance to obstacles as:
C(x) = 1

|Bo(x)|
∑

p′∈Bo(x)
dS(p′), where Bo(x) denotes a

finite set of points approximating o when located at pose
x. The function dS : R3 → R denotes the distance in
x, y and positive z direction to the environment’s surface
within the target volume V . Maximizing this function, i.e.
ξ(x) = C(x), leads to placements distant to obstacles. This
is useful, for example, if the robot is tasked to manipulate
the object further after placing. Minimizing this function, i.e.
ξ(x) = −C(x), in contrast, is a useful heuristic for packing
multiple objects into a limited volume. This objective is par-
ticularly interesting, as close proximity to obstacles renders
placements difficult to reach.

As can be seen in Fig. 1, and better so in the accompanying
video, our algorithm succeeds at computing placements with
high objective values for all test cases. To evaluate the
effectiveness of our algorithm design choices, we compare



our algorithm to three variations. In the first variant, we
omit the local optimization from Algorithm 1. In the second
variant, we instead replace the Monte Carlo tree search-
based sampling algorithm, Algorithm 2, with a naı̈ve uniform
random sampler. In the fourth variant, we also omit the local
optimization when using the uniform sampler.

We ran each variant for each objective, object and scene
20 times for 2 minutes and recorded the objective values of
the found solutions. The progress of the average objective
values as a function of runtime is shown in Fig. 5.

In all test cases all variants compute initial solutions within
a few seconds, and succeed at locating better solutions as
time progresses. We observe that using both MCTS and local
optimization performs better than, or as good, as all base-
lines. Even without local optimization, the MCTS sampling
outperforms the uniform sampler with local optimization in
most test cases. Only in scene 3 is the uniform sampler
competitive when minimizing clearance. This simple scene
has the least amount of obstacles, and thus sampling a
feasible placement has high probability. Here, the sampler
has little impact on the performance, and local optimization
is most decisive for achieving better performance.

In all cases, the mean objective values increase quickly
in the beginning before slowing down as they approach the
maximum objective ever observed in the respective scene.
This is likely due to the fact that the probability of locating
poses that improve the objective declines the higher the best
achieved objective is.

VI. DISCUSSION & CONCLUSION

We presented an algorithmic framework that computes
robot motions to transport a rigid object to a stable place-
ment that optimizes a user-provided objective. Our approach
achieves this also in environments cluttered with obstacles.
The approach considers all available robot arms to reach the
best placement and operates in an anytime-fashion, comput-
ing initial low-objective solutions quickly and improving as
computational resources allow.

We combine sampling-based motion planning and local
optimization with a hierarchical sampling algorithm based on
MCTS. A key novelty lies in the AFR hierarchy and applying
MCTS as sampling algorithm. While our experiments already
demonstrate the advantage of this approach, we believe it
has more potential. For instance, in this work the grasp, that
we place the object with, is determined by the chosen arm.
An interesting future extension is to incorporate different
choices of grasps into the hierarchy. In addition, the sampling
algorithm could prune branches of the hierarchy, that can not
contain any solutions.

Further, we believe the approach can be extended to
different types of placements. The different combinations
of placement faces and regions constitute disjoint contact
classes of object poses. In future work, we intend to extend
the AFR hierarchy to more diverse contact classes, such as
an object leaning against a wall.

Lastly, one of the weaknesses of the sampling-based
optimization is the decreasing convergence rate observed in

our experiments. To remedy this, we intend to investigate
whether we can exploit gradient information not only in
the local optimization step, but also in the goal sampling
algorithm.
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