
  

  

Abstract— We address the problem of developing precision, 

quasi-static control strategies for fingertip manipulation in robot 

hands. In general, analytically specifying useful object transition 

maps, or hand-object Jacobians, for scenarios in which there is 

uncertainty in some key aspect of the hand-object system is 

difficult or impossible. This could be in scenarios with standard 

fully-actuated hands where, for instance, there is not an accurate 

model of the contact conditions, or in scenarios with fewer 

control inputs than mechanical degrees of freedom (such as 

underactuated hands or those that are controlled by synergies or 

impedance controlled frameworks), since the output space is of 

higher dimension than the input space. In this work, we develop 

a method for extracting object transition maps by tracking the 

state of the grasp frame. We begin by modeling a compliant, 

underactuated hand and its mechanical properties through an 

energy-based approach. From this energy model, we provide 

controlled actuation inputs to change the state of the grasp 

frame. We observe the response from these actions and develop 

a regression map of the action-reaction pairs, where the map is 

subject to our intent for grasp frame movement and the regional 

relationship between the contacts. Once the regression model is 

developed, we perform within-hand planning of the grasp frame 

with newly introduced objects. This approach is agnostic to the 

global geometry of the object and is able to adapt when 

undesirable contact conditions, such as sliding, occur. The 

learning-based methodology estimates the non-linearities 

representative in the properties of the system. We test our 

framework physically on an adapted Yale Openhand Model O. 

By transferring the learned model from simulation to the 

physical hand without adaptation, we show that this energy 

modeling approach is robust to inaccuracies in parameter 

estimation. We demonstrate its efficacy in a handwriting task.  

I. INTRODUCTION 

Enabling robots to perform fine-grained manipulation tasks 
in unstructured, unmodeled environments is essential to 
successful implementations of future service robots. However, 
current planning and control for dexterous manipulation is 
faced with inherent challenges in these dynamic environments. 
Specifically, it is imperative that the robot estimates 
parameters for its model of the world [1]. Manipulation within 
such settings typically requires a priori knowledge of object, 
contact, and gripper models, or alternatively, expensive high-
fidelity sensor suites for parameter estimation. Even so, these 
advanced sensing capabilities are not always enough for the 
task at hand. Tradeoffs are introduced in soft, compliant, and 
underactuated hands that passively adapt to the environment, 
which enables them to easily grasp objects. Though, encoders 

 
 

are typically not installed at each of the joints and tactile 
sensing is often unavailable. Moreover, their state is not fully 
controllable via the available actuation inputs, making the 
development of traditional object transition maps, which 
represent the function from input actuator velocities to output 
object velocity, a strenuous task.   

This quest for dexterous capabilities has introduced various 
levels of modeling in the field of grasping and manipulation, 
investigating topics ranging from contact and fingertip models 
[2] to stability measures of the whole hand-object system [3]. 
These mechanics-inspired models have aided in prediction of 
how contacts, fingertips, and objects react in given conditions 
[4]. This underlying understanding has led to additional works 
in grasp planning [5], [6], fingerpad geometry optimization 
[7], finger gaiting [8], [9], and object stability analyses [10]. 
Nevertheless, manipulation remains difficult for tractable 
systems in real-world applications. 

Traditional approaches to grasping and manipulation have 
been through the use of high-dimensional, fully-actuated 
hands often augmented with tactile sensing capabilities. While 
these systems enable users to control each actuator 
individually, their high degree of dimensionality becomes 
difficult to control post-contact, since the closed kinematic 
chain risks overconstraint [11]. During overconstraint, linearly 
coupled actuation makes precise object manipulation difficult.  
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Fig. 1. Fingertip manipulation performed with the Yale Openhand 

Model O to write out the letters, ‘I', ‘R', ‘O', ‘S' with the tip of an 

object, after being trained from 29,000 path tracing experiences.  



  

An advantageous approach to manipulation has been 
through the use of soft, compliant, and underactuated hands, 
which passively adapt to the geometries of the object [12], 
[13]. Numerous works have shown their efficacy in grasping 
tasks, even presenting their utility in the difficult pinch and flip 
manipulation [14]. Although their inherent compliance of such 
hands is beneficial for grasping, manipulation remains difficult 
since the closed mechanism has more degrees of freedom than 
degrees of actuation. In [15], it was shown that precision 
dexterous manipulation is possible with underactuated hands 
given quasi-static assumptions in elastic perturbations and 
when holonomic contact configurations can be guaranteed. 
Through this notion, our previous works have addressed 
manipulation with underactuated hands in the planar case by 
simplifying quasi-static control inputs through the formulation 
of Precision Manipulation Primitives (PMPs) represented by a 
signed binary Jacobian. Though, this simplified approach 
presented its shortcomings in object motion accuracy, and 
required additional control modeling to increase manipulation 
resolution [16]. Following work developed a state transition 
model for object movement based on the PMPs, and was 
shown to increase accuracy in the planar manipulation case 
[17]. Nonetheless, most previous work has addressed 
underactuated manipulation in 2D,  where only one other work 
in the spatial domain has been completed to the best of the 
authors’ knowledge [18].  

This work builds on the observation that precision 
dexterous capabilities with underactuated, compliant, or soft 
hands is possible but likely follows in the form of a non-linear 
map from actuation input velocities to object velocity. 
Through leveraging their inherent ability to easily acquire and 
maintain a stable grasp, even with parametric uncertainties or 
undesirable external perturbations, we model the system as a 
parallel mechanism in fingertip manipulation [19]. Its 
configuration is then obtained by solving for the minimum 
energy configuration of the hand-object system, while 
maintaining a stable grasp frame ∈ 𝑆𝐸(3). 

Training data is acquired by observing the movement of the 
grasp frame after random actuation, and doing so over many 
regional contact relationships. The grasp frame is comprised 
of exactly three contacts. By varying the distances between the 
three contacts with respect to one another, while also honoring 
the kinematic constraints of the hand, we can represent a fluid 
representation of varied object geometries. Ultimately, this 
framework represents an approach that is agnostic to the global 
geometry of the object, allowing for object generalization. 
Additionally, it allows the system to recover when undesirable 
events occur at the contacts, e.g. slip or rolling, since the 
regression framework is trained with various relationships 
between the contacts. 

We train a Random Forests Regressor (RFR) subject to 
object velocity intent (Cartesian velocity reference). This 
learned model is later used for predicting actuation inputs 
required to reach a desired object pose. In order to control the 
movement of newly introduced geometries, we define a point 
on the object we intend to control, Point of Manipulation, 
(POM), and compute the rigid body transformation from the 
grasp frame to create a plan. Once computing a Cartesian 
velocity reference, we control our grasp frame, consequently 
the POM, through a closed-loop approach by continuously 
querying our RFR model until completion (Fig. 1). 

To the best of our knowledge, this is the first work that 
learns object transition maps in a data-driven framework for 
spatial, underactuated dexterous manipulation. The rest of this 
paper is organized as follows: Sec. II presents the energy 
model used to describe the hands, Sec. III presents the 
framework and the control algorithm, Sec. IV presents data 
collection, Sec. V. analyzes the experimentation results, and, 
Sec. VI concludes this paper with a future work discussion.     

II. OBJECT MOTION MODELS 

In this section, we will discuss the underlying problems in 

formulating the hand-object Jacobian for underactuated 

hands. We will follow by presenting the formulation of the 

grasp frame and the energy model used for this work to 

estimate motions of an underactuated system. 

A. The Hand-Object Jacobian 

In traditional, fully-actuated manipulators, there exist 
models that fully describe how an object should respond to 
actuation inputs during fingertip manipulation. These models 
typically come in the form of forward and inverse kinematic 
relationships that can be calculated analytically given a priori 
knowledge of the system. Depending on the system's input 
dimensionality, these models can become non-trivial to derive. 
Additionally, accuracy of the manipulation is subject to 
estimation in physical contact parameters. Unfortunately for 
underactuated hands, developing an analytic map from 
actuation inputs to object movements is still an unsolved 
problem, since reconfiguration of the hand is solved with 
respect to forces applied by the hand on the object. Estimating 
the reconfiguration of the finger at the point of contact requires 
knowledge about the contact force specifically, such as 
location and direction, which is not always known when the 
hand is not equipped with tactile sensing capabilities.  

Without the use of force sensing, finding the analytic input-
output relationship for an underactuated system is non-trivial 
since input dimensionality is less than that of the constrained 
degrees of freedom of the mechanical system. For a 
manipulator comprised of 𝑘 serial-link fingers, each having 
𝑗𝑖 ,  joints per finger, the hand or joint configuration, 𝑞 ∈

ℝ∑ 𝑗𝑖
𝑘
𝑖=1 , fully defines the state of the system. In traditional 

grasping and manipulation modeling, the manipulator 
Jacobian, or similarly noted as the hand Jacobian, 𝐽ℎ(𝑞), 
represents the map from actuator velocities to fingertip 
velocities. We will suppress the 𝑞 dependence for the rest of 
this paper. In fact, 𝐽ℎ = 𝑏𝑙𝑘𝑑𝑖𝑎𝑔(𝐽1, … , 𝐽𝑖), i.e. the block 
diagonal matrix of Jacobians for each finger in the hand. 
Similar to the hand configuration, a manipulator can be 
represented by its actuator positions, 𝑎. A system is fully 
actuated if 𝑑𝑖𝑚 (𝑎) = 𝑑𝑖𝑚 (𝑞) and underactuated if 𝑑𝑖𝑚(𝑎) <
𝑑𝑖𝑚 (𝑞). For soft robotic systems, or in general for systems 
with fewer control inputs than degrees of freedom, the overall 
controllability of the system decreases as the difference 
between 𝑑𝑖𝑚 (𝑞)  and 𝑑𝑖𝑚 (𝑎) increases. We can represent the 
spatial representation of the hand Jacobian as: 

 𝑥̇ = 𝐽ℎ𝑞̇ (1) 

where fingertip velocities 𝑥̇ ∈ ℝ3𝑘, 𝐽ℎ ∈ ℝ3𝑘×𝑞 , and joint 
velocities 𝑞̇ ∈ ℝ𝑞 . Similarly, the Grasp Matrix, 𝐺, in the 
velocity domain represents the map from external contact 
velocities to object frame velocity, 𝑣 ∈ 𝑠𝑒(3). This 



  

representation, assuming a single point contact on the tip of 
each finger, follows the form: 

 𝑥̇ = 𝐺𝑇𝑣 (2) 

 In the spatial case, 𝐺 ∈ ℝ6×𝑏 , where 𝑏 =  ∑ 𝑟𝑎𝑛𝑘(𝐵𝑖)𝑖 . 
For this notation, 𝐵𝑖  is the basis contact model for each contact 

on the 𝑖𝑡ℎ finger. According to the fundamental grasping 
constraint [20], in order to maintain a stable grasp on the object 
without sliding, contact velocities of the manipulator must be 
equal to contact velocities on the object. This further eludes to 
the hand-object Jacobian, 𝐻, which is a direct map from 
actuator velocities to object velocity. This formulation 
assumes a point contact with friction model, enabling the 
finger to apply a force in 𝑥, 𝑦, and 𝑧+ directions. This requires 
𝐵𝑖 ∈ ℝ6×3, ∀𝑖 ∈ {1, … , 𝑘} and (𝐺𝑇)+ to be solvable as the 
pseudo-inverse of the Grasp Matrix transposed: 

 𝑣 = (𝐺𝑇)+𝐽ℎ𝑞̇ = 𝐻𝑞̇ (3) 

Concretely, in order to solve for the hand-object Jacobian 
for underactuation, we want to find a transformation matrix, 𝑇, 
which maps 𝐻 and input actuation velocities, 𝑎,̇  to object 
frame velocity, 𝑣: 

 𝑣 = 𝐻𝑇𝑎̇ (4) 

where, 𝑇𝑎̇ = 𝑞̇ and 𝑇 ∈ ℝ𝑞×𝑎. If 𝑇 can be represented 
symbolically and 𝐻 can be formed analytically, the object can 
be manipulated as desired by solving for the representative 
actuator velocities to control the system. 

 In serial-link, tendon-driven underactuated mechanisms, a 
tendon constraint dictates the relationship between subsequent 

joints controlled by the same actuator. Evaluating a single 𝑖𝑡ℎ 
finger in the two-link case and by assuming the routed tendon 
is inextensible: 

 𝑟𝑎𝑎̇ = 𝑟𝑝𝑞̇𝑝 +  𝑟𝑑𝑞̇𝑑 (5) 

where 𝑟𝑎 , 𝑟𝑝. and 𝑟𝑑 are the radii of the actuator, proximal, and 

distal pulleys and 𝑎̇, 𝑞̇𝑝, and 𝑞̇𝑑 are the velocities about the 

same joints, respectively (Fig. 2). Similarly, previous texts 
have represented this constraint in the form of an actuator 
Jacobian,  𝐽𝑎 [15]:    

 
𝐽𝑎 =  [

𝑟𝑝

𝑟𝑎

𝑟𝑑

𝑟𝑎
] ,     𝑎̇ = 𝐽𝑎 [

𝑞̇𝑝

𝑞̇𝑑
] 

 

(6) 

Though, through this single velocity constraint and due to 
the coupling of the joints, 𝑞̇𝑝 and 𝑞̇𝑑  are linearly dependent, 

presenting our inability to solve for matrix 𝑇 symbolically. 
Therefore, without any additional constraints added to the 
system, in this work, we want to learn a representation of 𝐻𝑇 
so that we can map 𝑎̇ to 𝑣. 

B. The Grasp Frame 

Given a stable grasp, any point on an object can be 
represented by a transformation from the object frame to any 
desired point on the rigid body. In this work, we denote the 
object frame as the grasp frame, which is adapted from [21]. 
The grasp frame formulates a standardized representation for 
object movement constructed by three contacts. While 
assuming a stable, point contact grasp, the grasp frame 
uniquely describes the motion of any point on the object during 
manipulation. Let us define contact points between the object 
and finger tip 𝑃 = 𝑝1, … , 𝑝𝑖  where 𝑝𝑖 ∈ ℝ3, ∀𝑖 ∈ {1, … , 𝑘} and 
where any three points in 𝑃 can define the grasp frame. 
Additional contacts can be added, but the relative positions 
between three uniquely defines a grasp constraint, i.e. 
additional contacts {𝑝4, … , 𝑝𝑁} ⊂ 𝑃 are redundant if all remain 
fixed to the object. We will define 𝒳 to be the pose of the grasp 
frame, defined by:  

𝒳 = [𝑔𝑥, 𝑔𝑦 , 𝑔𝑧 |𝑔𝑜] ∈ 𝑆𝐸(3) 

𝑔𝑜 =
1

3
(𝑝1 + 𝑝2 + 𝑝3) 

 𝑔𝑥 =
𝑝2 − 𝑝1

‖𝑝2 − 𝑝1‖
 

 

(7) 

𝑔𝑧 =
(𝑝3 − 𝑝2) × 𝑔𝑥

‖(𝑝3 − 𝑝2) × 𝑔𝑥 ‖
 

𝑔𝑦 = 𝑔𝑧 × 𝑔𝑥 

In this notation, 𝑔𝑥, 𝑔𝑦, and 𝑔𝑧 are the directional vectors 

of the 𝑥, 𝑦, and 𝑧 axes, respectively, about an origin 𝑔𝑜, all with 
respect to the world frame. Given 𝒳, any desirable Point of 
Manipulation (POM) which represents a frame, 𝑀 ∈ 𝑆𝐸(3), 
can be a point represented in space, 𝑝𝑚 ∈ ℝ3, by a 
transformation from 𝒳. This transformation assumes the 

 
 

 
Fig. 2. A single motor controls the actuation of a single finger about 

its proximal and distal joints via a tendon. Abduction between 

fingers is kept constant in this work.   

 
 

 
Fig. 3. The grasp frame is comprised of exactly three points between 

the hand and the object, represented by the frame in the center of the 

blue contact triangle constraint. The Point of Manipulation (POM) 

is then a rigid body transformation from the grasp frame as to allow 

for object manipulation planning.  



  

object is a rigid body, in addition to the contact triangle 
constraint 𝑐𝑜𝑛𝑠𝑡(𝒯) where 𝒯 ∈ ℝ3. This constraint signifies 
that the distances between contacts formulating the grasp 
frame remain constant during manipulation, i.e. a point contact 
is maintained and no sliding or rolling is observed on the 
object. The relationship between contacts is, 𝒯 =
{𝑑𝑖𝑠𝑡(𝑝1, 𝑝2), 𝑑𝑖𝑠𝑡(𝑝2, 𝑝3), 𝑑𝑖𝑠𝑡(𝑝3, 𝑝1)}  where 𝑑𝑖𝑠𝑡(⋅) is 
Euclidean distance. This contact triangle constraint is used 
later in the regression framework (Sec. III). 

C. The Manipulation Energy Model 

Underactuated mechanisms that leverage springs for 

passive adaptability can be modeled in accordance to energy. 

Each finger is modeled as a serial-link chain of rigid bodies 

and springs. The tendon force supplied by the actuator is 

counteracted by the force of the contacts and the return force 

of the springs, and is typically dampened by friction in the 

tendon's transmission. Leveraging the simplicity of acquiring 

and maintaining a stable grasp with underactuated hands, we 

can form a simple parallel mechanism with springs model of 

the system. While this formulation appears to neglect contact 

force at the fingertips, this requirement is maintained from the 

triangle constraint in Sec. IIB. We also assume that friction in 

the tendon's transmission is negligible.   

As a parallel mechanism, the actuation of a single link, or 

finger, corresponds to a change in pose for 𝒳 and can be 

solved through energy balancing. We expect the hand-object 

system to maintain energy equilibrium between the contacts 

{𝑝1, 𝑝2, 𝑝3} and the grasp frame after movement.  In fact, 

while neglecting friction about the joints, the system will 

equilibrate to the minimum energy configuration subject to 

Eq. (5) after an actuation input or external disturbance. The 

energy, 𝐸𝑖,  within each finger is, of course, configuration 

dependent. For the two-link case, where 𝜃𝑖 = {𝜃𝑝𝑖, 𝜃𝑑𝑖}, or 

the joint configuration of the proximal and distal joint, 

respectively, the energy of the finger can be represented as:  

 
𝐸𝑖(𝜃𝑖) =

1

2
(𝑘𝑝𝜃𝑝𝑖

2 + 𝑘𝑑𝜃𝑑𝑖
2  ) 

 

(8) 

where 𝑘𝑝 and 𝑘𝑑 are the spring constants for the proximal 

joint and the distal joint, respectively (Fig. 2). Through this 

constraint, we can solve for the joint configuration of the hand 

by minimizing the elastic energy between all of the fingers. 

Assuming our grasp constraint is still valid, and that a single 

point contact at the fingertips is maintained, the integrity of 

the grasp frame should still hold. Therefore, the equilibrated 

configuration of the hand, 𝑞∗, can be found through: 

 
𝑞∗ = arg min

𝑞
∑ 𝐸𝑖(𝜃𝑖)   𝑠. 𝑡.  𝐸𝑞. (5)

𝑖

 

 

(9) 

III. LEARNING THE OBJECT TRANSITION MAP 

The proposed methodology in this work fundamentally 
estimates the pseudo-inverse of the product of the hand-object 
Jacobian, 𝐻, and the transformation matrix, 𝑇, namely (𝐻𝑇)+, 
creating a map from desired object movement (Cartesian 

velocity reference, 𝒳̇) to actuation velocities, 𝑎̇. In the 

traditional system estimation problem, we observe 𝒳 ̇  given 𝑎̇ 
and formulate a forward map of how a system responds to an 
input. Conversely, in the control problem, we want to control 

𝒳 ̇ through 𝑎̇, which clarifies the formulation of the inverse 
function. In the simplified understanding of this problem, we 
estimate what actuation inputs result in desirable movement of 
the contacts in order to manipulate the grasp frame.  

As in Sec. IIA, analytically deriving this transition map for 
soft or underactuated mechanisms is infeasible if solely using 
the velocity constraints previously described. It may be 
possible that additional constraints are justified for specific 
mechanisms, but this is not the case in general. By creating a 
representative model of the system, we are able to estimate the 
input-output relationship, or the action-reaction pairs, by 
performing an action and observing the reaction. This reaction 
is likely a non-linear relationship between contact movement 
and actuation inputs. We find that the proposed energy model 
is tolerant to uncertainties in physical parametric estimation, 
allowing us to easily transfer the regression model learned 
from simulation to the physical hand. While this model serves 
our purpose well, other input-output models would suffice 
depending on the mechanism used and the task.  

The desired transition map is learned through the presented 
energy minimization approach. Holistically, actuation inputs 
to the hand, 𝑎̇ result in a Cartesian velocity movement of the 

grasp frame, 𝒳̇, displacing the grasp frame to a new pose 𝒳. 
While maintaining a constant relationship for the triangle 
constraint 𝒯 which ensures a point contact, the model is 
actuated randomly throughout the entire workspace to evaluate 

the relationship between 𝒳, 𝒳̇, and 𝑎̇. This presents the 

forward system estimation problem, where (𝒳, 𝑎̇, 𝒯) → 𝒳̇. By 

collecting this reaction, 𝒳̇, from an action, 𝑎̇, we can form the 
inverse of this function for the control problem. 

Once a single relationship in 𝒯 is exhausted, i.e. 𝒳 has 
reached all points in the workspace for the given triangle 
constraint, we can randomly re-initialize 𝑞. By doing so, this 
specifies a new relationship in 𝒯 for the next iteration, that 
fundamentally represents a new hand-object configuration 
with a dissimilar object geometry. The configuration is 

 
 

 
Fig. 4. Energy model simulation for manipulating the grasp frame. 

For data collection, the grasp frame was randomly manipulated to 

acquire the object transition map, while varying contact relationships 

between the fingers. Final evaluation of the map was conducted by 

querying random points within the POM's potential workspace (red 

sphere) and executing the path. (Bottom) We note that the POM path 

(green) executed deviates slightly from the projected path (blue) at 

the beginning but converges to the end location. 



  

validated for force closure and the object is then manipulated 
randomly once again according to the energy model. Through 
this initialization approach, the learned map observes a fluid 
representation of relational object geometries, increasing 
object generality. Additionally, as aforementioned, this 
formulation is beneficial in that it neglects global object 
geometry. This not only allows the learned map to generalize 
over different objects, but also to adapt when undesirable 
contact scenarios occur. Specifically, we seek to learn the 
function, ℎ(⋅), with our non-linear regressor: 

ℎ: (𝒳, 𝒳̇, 𝒯) → 𝑎̇ 

In the system estimation problem, the Cartesian velocity 

reference, 𝒳̇, represents a reaction given actuation. In the 
control problem, it now serves as an abstraction for intended 
object movement. Given 𝒳 and the intended goal of the grasp 
frame, 𝒳𝑔, we can calculate the vector representing the linear 

transition between the two, and scale it according to our 

desired object transition velocity, calculating 𝒳̇. Naturally, 
there is a trade-off between speed and stability during 
manipulation, due to our quasi-static assumptions, influencing 

the length of the vector 𝒳 ̇ used in execution.  Now, the learned 
function ℎ(⋅) estimates the actuation velocity, 𝑎̇, required to 
receive the desired system reaction. 

 
Specifically, for the handwriting task, we seek to control a 

given point on the object that is offset from the grasp frame. 
Once the object transition map is created, controlling the POM 
pose, 𝑀, is achieved by controlling the pose of the grasp frame. 
The algorithm for control is summarized in Alg. 1. Inputs 
include the goal position of the POM, 𝑀𝑔, minimum distance 

threshold from 𝑀 to 𝑀𝑔 signifying completion, 𝑑, and the 

number of iterations allotted to complete the task, 𝑖𝑡𝑒𝑟. The 
algorithm begins by computing the transformation,  𝑡, from the 
grasp frame into the POM. This requires knowing 𝒯, which is 
calculated in 𝑐𝑎𝑙𝑐𝑇(⋅) by either extracting location from 
markers on the hand or from the simulation environment. The 
𝑖𝑛𝑣𝑇𝑟𝑎𝑛𝑠(⋅) method then converts coordinates from the POM 
into 𝒳 given 𝑡 to solve for the final grasp frame configuration 
of the hand, 𝒳𝑔. The Cartesian velocity reference is then 

computed in 𝑐𝑎𝑟𝑉𝑒𝑙(⋅)  by taking the difference between 𝒳 
and 𝒳𝑔 then scaling appropriately for the task. Actuation 

velocities are then estimated in the learned function, ℎ(⋅), and 
executed on the hand. The loop breaks once 𝑀 has reached a 
distance within the threshold, 𝑑, to its desired goal position or 
exceeds the number of loop iterations. Waypoints are 
completed iteratively, by changing the goal position of the 
POM to a new waypoint upon completion. 

IV. DATA COLLECTION 

A.  The Model O 

An adapted Model O from the Yale Openhand Project [22] 
was used for this work. Physical modifications include a soft, 
rounded fingertip (durometer 30), pulleys throughout the 
finger to reduce friction in the tendon's transmission, and 
bearings within each of the joints. As a tendon-driven 
mechanism, each finger is powered by a single actuator 
(Dynamixel XM430-W350-R) in position control mode. The 
hand is comprised of three fingers, each of two links. An 
additional motor is attached to enable ab/adduction for the 
fingers, which is set to a fixed position of 𝜃𝑎 = 90° and is not 
used in this work (Fig. 2,3,4). Return forces for each finger are 
supplied by a torsional spring about the proximal joint, and an 
extension spring about the distal joint. The Model O is not 
symmetric about the 𝑧 axis of the gripper, i.e. the locations of 
the proximal joints do not form an equilateral triangle, further 
adding geometric complexities to the manipulation problem.  

B. Collection and Training 

Data collection was achieved through the use of the 
aforementioned energy minimization approach (Sequential 
Least Squares Programming Optimization). We began by 
constructing a representative Model O in simulation with 
estimated pulley radii, spring constants, and link lengths. Due 
to the energy model’s robustness to parametric uncertainties, 
general estimation of these values did suffice. We then solved 
for the initial configuration of the hand given three contact 
points in space. This defined the values static in 𝒯. Once a 
valid configuration was found, we applied a random actuation 
set to the fingers and recorded the movement (Fig. 4). 

We observed the original location of the grasp frame as 𝒳. 
Given this random actuation, 𝑎̇, we then observed the change, 

𝒳̇ for a single actuation step. Evaluating these action-reaction 
pairs, we formed a feature set, 𝒮, and regression set, 
ℛ, describing the state of the system and its motion, while 

maintaining integrity on 𝒯. Denoted by 𝑠𝑛 = (𝒳𝑛 , 𝒳̇𝑛, 𝒯𝑛) an 

input feature, and by 𝑎̇𝑛, an output feature, the training dataset 
is defined as:  

𝒮 = {𝑠𝑛}𝑛=1:𝑁,    ℛ = {𝑎̇𝑛}𝑛=1:𝑁 

A total of 29,000 action-reaction pairs were collected in 
simulation over the course of 50mins for 𝒮 and ℛ, representing 
500 different relationships in 𝒯. For each representation in 𝒯, a 
virtual object radius, i.e. a circle fit to intersect all three contact 
points, was computed and was restricted to be within 3.5-
5.5cm. To maintain a tractable amount of data, every possible 
𝒳 with respect to 𝒯 that is possible according to the gripper's 
workspace was not computed. This would merely result in a 
very large dataset and would likely be redundant for similar 
relationships in 𝒯,  e.g. when a single contact segment slightly 
changes. It was assured that for similar relationships in 𝒯, a 



  

representative spread of the workspace was realized through a 
nearest-neighbors approach. A Random Forests Regressor 
(RFR) [23] consisting of 200 trees at a depth of 30 was trained 
using 5-fold cross validation, with an average 𝑅2 score of 
0.965 for all three regressed outputs. This regressed model, 
composed from data solely collected in simulation, will serve 
as the basis for our execution in the following section.  

V. EXPERIMENTS 

To show the efficacy of the proposed RFR model, we 
evaluated it both in simulation and on a physical hand using 
Alg. 1. For the physical evaluations, a state detection system 
(Fig. 6) was created to track the location of the contacts and 
pose of the POM via 4 overhead cameras during manipulation. 
AprilTags provided a pose ∈ 𝑆𝐸(3) for each finger and for the 
POM. Contact positions to construct 𝒯 were extracted by 
calculating a transformation from the AprilTag on the back of 
the finger (see Finger Marker, Fig. 3) to the point of contact.  

A. Waypoint Evaluation 

The hand was initialized to five different starting 
configurations in the energy-based simulation, representing 

five different object geometries. The virtual object radius was 
ensured to be within that of the training data. The POM was 
translated to 5cm above the grasp frame and with the same 
rotation as 𝒳. Once initialized for each object, the hand was 
commanded to move between 500 randomly selected 
waypoints within a sphere of radius 2.5cm (Fig. 4). During 
random waypoint selection, it was ensured that each waypoint 
was unique, but it was not guaranteed that the waypoint was 
within the reachable workspace of the learned model or that of 
the hand-object system. Once executed, if the previous 
waypoint was completed, the system started from that location. 
Conversely, if the POM did not reach its intended waypoint, 
the system was reset before continuation to the next waypoint.  

The trajectory of the POM is tracked through the 
manipulation. We note that in the example, Fig. 4, the path of 
the POM deviates slightly at the beginning of the movement 
before finally converging within 1mm of the intended 
waypoint. This response appeared often for the completed 
trajectories. Waypoints that were tagged as incomplete 
reached within 5mm of the desired goal location 73% of the 
time, and could not move closer without violating the contact 
constraint. While we seek to have a fully connected, fluid 
workspace for all object geometries, this is not always feasible 
given physical system constraints. Increased waypoint 
completion is likely to be realized if all waypoint goals were 
suited within the workspace of the hand-object system, which 
we did not guarantee. Results are summarized in Table 1. 

 

TABLE I.  EVALUATION OF 500 WAYPOINTS 

 

 
 

 
Fig. 5. Physical experiment tracking the point of manipulation of the object in Figure 1. Letters A-E are written according to their respective 

waypoints in a top-down view (start: square, connecting: circle, finish: star). The progression of waypoints, depicted in letter B, represents 

the intended linear manipulation path for the object. The number of waypoints, time, expected point-to-point (PTP) distance, actual distance 

traveled, and waypoint error is recorded. Letters with abrupt transitions in Cartesian velocity references deviate slightly off the path. 

 
 

 
Fig. 6. Four-camera setup for tracking state of the contacts and the 

grasp frame. 



  

Five different objects were tested with virtual radii ranging 
from 3.5cm to 4.9cm. The segment lengths constructing the 
relationship in 𝒯 = {𝑆𝑒𝑔1, 𝑆𝑒𝑔2, 𝑆𝑒𝑔3} were selected to 
represent varying object geometries. For each object, we 
record the speed in which the object transitioned to the desired 
goal configuration and if the waypoint was completed. As 
provided in Table 1, time was captured by evaluating the 
number of iterations required to reach each waypoint, 100 
iterations (3.3 seconds) and 300 iterations (10 seconds). As the 
number of iterations increases, the average distance traveled 
and the number of waypoints completed also increases. We 
found that the best virtual object radius for waypoint 
completion was around 4 cm with equal segment lengths for 
𝑆𝑒𝑔1 and 𝑆𝑒𝑔3 of the contact triangle. We observed during 
experimentation that as the object radius increased, the 
workspace of the POM tended to decrease. Intuitively, this 
corresponds to the limited workspace of the finger post-contact 
with a growing object radius. The observed phenomena did not 
affect the average length of completed waypoints.    

B. Handwriting Task 

The learned model was evaluated physically by analyzing 
its performance in a modified handwriting task. For this 
execution, the learned model was transferred directly from 
simulation to the physical environment. This experiment was 
performed with an irregular-shaped, tapered object as to allow 
slippage and recovery (Fig. 1, 5) of virtual radius 4.51cm 
(𝒯 ={7.5cm, 8.0cm, 7.8cm}, 41g). The task was to write the 
first five letters of the English alphabet in capital form. 
Waypoints were created according to the rigid body 
transformation from 𝒳 to the POM, which was tracked 

according to the AprilTag attached to the top of the object 
(7.5cm above the grasp frame). Once transformed, we queried 
the RFR model in 𝒳 coordinates to find the actuation inputs 
required for movement, as in Alg. 1. The center of the object 
AprilTag was tracked during the manipulation and performed 
the 'writing' of the letters, i.e. the traced letters of the alphabet 
were written according to the center of the tag. Once a single 
waypoint was reached within a threshold of 2mm, or the 
maximum number of 300 iterations (10 seconds) was 
exceeded, the Cartesian velocity reference was updated to 
direct the system to the next waypoint. In physical 
experimentation, the waypoints were always reached within 
the allotted iteration limit. 

As depicted in Fig. 5, the model's execution resulted in 
discernible English letters in capital form (letters A-E are 
evaluated). It is noted that in some cases the POM did deviate 
slightly from the expected point-to-point path signified by the 
waypoints (Fig. 5, Letter B). We believe this response to be an 
artifact of the current configuration of 𝑞 , where, as learned 
from the simulated energy model, there are instances where 
the hand has difficulty changing directions abruptly while 
maintaining integrity on 𝒯. This phenomenon tends to occur 
when the system realizes that the force application direction of 
the finger would be insufficient to maintain force closure, 
allowing the contacts to slip. Thus, the grasp frame must move 
slightly away from its desired linear motion in order to set up 
the approach for the next waypoint. This phenomenon is most 
clearly depicted in the writing of letters, 'B' and 'D'. In these 
executions, the POM traveled approximately an additional 
centimeter during writing.  

During this experiment, we also noted the waypoint error 
realized during execution. Depending on the grasp frame 
location within the workspace, POM movement generally 
resulted in Cartesian steps from 0.5 to 1.4mm as observed by 
the overhead camera. As in Alg. 1, the object was manipulated 
until the POM reached within 𝑑 = 2mm of the intended 
waypoint. The waypoint error was calculated individually for 
each letter. As noted in Figure 5, we did not see a direct 
correlation between the waypoint error and the additional 
distance traveled between waypoints. We again attribute the 
increase in error to the current configuration of 𝑞  during 
manipulation. Given these results, we believe it is possible to 
further increase waypoint resolution by appropriately scaling 
the Cartesian velocity reference as the POM approaches the 
waypoint. In all cases, the POM was able to reach the waypoint 
within the set threshold and within the allotted time.  

C. Adaptability to Contact Changes and Varied Radii 

A final evaluation was completed with the same physical 
setup as in the handwriting experiment. In this execution, we 
desired to write the letter ‘C’ with the POM of an object. Using 
the same object as previously, which we will denote as the 
large object, we evaluated the robustness of waypoint 
completion and system updating once undesirable contact 
conditions occur. We simulate this by first moving the POM 
to the desired waypoint and then pushing the object down in 
the grasp, shrinking the virtual object radius by determining a 
new relationship in 𝒯 and changing the transformation 
between 𝒳 and 𝑀. Results are depicted in Fig. 7A. 

Execution began by tracing the top portion of the letter ‘C’ 
with the same contact relationship in Sec. VB. By pushing the 
object down in the grasp, we formed a new contact relationship 

 
 

 
Fig. 7. Evaluation of writing the letter ‘C’ when changing contact 

location on a single object (A) and varying radii on different objects 

(B-D). Dots on the object signify contact points. The two objects are 

designed such that they have the same radii as observed during the 

contact changes in (A) (4.05cm and 3.52cm, respectively). When 

executing (A), the system must adjust to the rigid body 

transformation change from the POM to reach the desired waypoints 

in a top-down view. 



  

𝒯 = {6.9𝑐𝑚, 6.7𝑐𝑚, 7.4𝑐𝑚} with a virtual radius of 4.05cm 
and a POM distance of 6.3cm. Once the long edge of the letter 
was completed, the object was again moved down towards the 
palm creating a relationship 𝒯 = {5.9𝑐𝑚, 5.9𝑐𝑚, 6.3𝑐𝑚} with 
a virtual radius of 3.52cm and a POM distance of 5.2cm. The 
final section of the letter ‘C’ was then completed.  

During this evaluation, we note that the waypoint error and 
the overall geometry of the traced letter is similar to that of the 
execution in Sec. VB, showing robustness to Alg. 1 and the 
system. To further illustrate this, two additional objects, noted 
medium and small, were created to be representative of the 
virtual radii noted after object movement during the 
experiment. The distance to POM was set to the same as in 
Sec. VB, equal to 7.5cm. We again performed the writing of 
the letter ‘C’ to evaluate the waypoint error and completion. 
We find that this execution deviates slightly compared the 
original execution (Fig. 7C-D).  

VI. CONCLUSIONS AND FUTURE WORK 

In this work we described a framework for extracting 
object transition maps for systems with fewer actuation inputs 
than mechanical degrees of freedom. This approach attempts 
to directly estimate the inherent non-linearities evident in 
controlling compliant or underactuated systems by evaluating 
an energy model and training a non-linear regressor. For our 
instantiation of this framework on the Yale OpenHand Model 
O, we formulated an energy model for passively elastic hands 
and it serves as the basis for data collection.  

This approach benefits from its simplicity to implement, its 
robustness to parameter estimations, and its generalization to 
object geometries. The object was represented as a 
standardized grasp frame between three contacts, which in turn 
neglects the requirement to know global object geometry. By 
changing the relationship between contacts during data 
collection, we are able to fundamentally simulate an array of 
objects. We find that we can transfer the learned regression 
model from simulation with ease to the physical hand, through 
only roughly estimating spring constants.  

By evaluating the action-reaction pairs of the system, we 
formed a Random Forests regression map that represents the 
actuation input required to transition the object pose towards 
the desired state. From training over varied contact 
relationships, the learned regression map is able to adapt to 
newly introduced objects and even continue manipulating 
when undesirable contact conditions, such as rolling, occur. 
We show the efficacy of the developed framework by 
deliberately moving contacts during manipulation, which 
changes the local object geometry, to complete a writing task.  

As future work, we are interested in extending this 
framework for additional contacts, and evaluating how finger-
gaiting can play a role in extending object manipulation. We 
plan to evaluate how models differ between those developed 
in simulation and that of data collected on a physical hand. We 
believe advanced within-hand manipulation planning can play 
a vital role in precision of the POM movement. Additionally, 
we plan to define this framework by further investigating the 
analytic structure of its estimated models.  

REFERENCES 

[1] A. M. Okamura, N. Smaby, and M. R. Cutkosky, “An overview of 

dexterous manipulation,” in Proceedings 2000 IEEE International 
Conference on Robotics and Automation (ICRA), pp. 255–262. 

[2] A. Bicchi and V. Kumar, “Robotic grasping and contact: a review,” in 
Proceedings 2000 IEEE International Conference on Robotics and 
Automation (ICRA), vol. 1, pp. 348–353. 

[3] M. A. Roa and R. Suárez, “Grasp quality measures: review and 
performance,” Auton. Robots, vol. 38, no. 1, pp. 65–88, Jan. 2014. 

[4] K. T. Yu, M. Bauza, N. Fazeli, and A. Rodriguez, “More than a million 

ways to be pushed. A high-fidelity experimental dataset of planar 

pushing,” in Proceedings 2016 IEEE International Conference on 
Intelligent Robots and Systems (IROS), pp. 30–37. 

[5] A. Kimmel, R. Shome, Z. Littlefield, and K. Bekris, “Fast, Anytime 
Motion Planning for Prehensile Manipulation in Clutter,” 
arXiv:1806.07465, Jun. 2018. 

[6] K. Hang, J. A. Stork, N. S. Pollard, and D. Kragic, “A Framework for 

Optimal Grasp Contact Planning,” IEEE Robot. Autom. Lett., vol. 2, no. 
2, pp. 704–711, Apr. 2017. 

[7] H. Song, M. Y. Wang, and K. Hang, “Fingertip Surface Optimization 

for Robust Grasping on Contact Primitives,” IEEE Robot. Autom. Lett., 
vol. 3, no. 2, pp. 742–749, Apr. 2018. 

[8] R. Platt, A. H. Fagg, and R. A. Grupen, “Manipulation gaits: sequences 
of grasp control tasks,” in Proceedings 2004 IEEE International 

Conference on Robotics and Automation (ICRA), p. 801–806 Vol.1. 

[9] L. Han and J. C. Trinkle, “Dextrous manipulation by rolling and finger 

gaiting,” in Proceedings 1998 IEEE International Conference on 
Robotics and Automation (ICRA),  vol. 1, pp. 730–735. 

[10] D. J. Montana, “The condition for contact grasp stability,” in 
Proceedings 1991 IEEE International Conference on Robotics and 
Automation (ICRA), pp. 412–417. 

[11] D. Prattichizzo and J. C. Trinkle, “Grasping,” in Springer Handbook of 
Robotics, 2016, pp. 955–988. 

[12] A. M. Dollar and R. D. Howe, “The highly adaptive SDM hand: Design 

and performance evaluation,” in International Journal of Robotics 
Research, 2010, vol. 29, no. 5, pp. 585–597. 

[13] R. Deimel and O. Brock, “A novel type of compliant and underactuated 

robotic hand for dexterous grasping,” Int. J. Rob. Res., vol. 35, no. 1–
3, pp. 161–185, Jan. 2016. 

[14] R. R. Ma, L. U. Odhner, and A. M. Dollar, “Dexterous manipulation 
with underactuated fingers: Flip-and-pinch task,” in Proceedings 2012 

IEEE International Conference on Robotics and Automation (ICRA), 
pp. 3551–3552. 

[15] L. U. Odhner and A. M. Dollar, “Dexterous manipulation with 

underactuated elastic hands,” in Proceedings 2011 IEEE International 
Conference on Robotics and Automation (ICRA), pp. 5254–5260. 

[16] B. Calli and A. M. Dollar, “Vision-based model predictive control for 
within-hand precision manipulation with underactuated grippers,” in 

Proceedings 2017 IEEE International Conference on Robotics and 
Automation (ICRA), pp. 2839–2845. 

[17] A. Sintov, A. S. Morgan, A. Kimmel, A. M. Dollar, K. E. Bekris, and 

A. Boularias, “Learning a State Transition Model of an Underactuated 
Adaptive Hand,” IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1287–
1294, Apr. 2019. 

[18] R. R. Ma and A. M. Dollar, “An underactuated hand for efficient finger-

gaiting-based dexterous manipulation,” in 2014 Proceedings IEEE 

International Conference on Robotics and Biomimetics (ROBIO), 2014, 
pp. 2214–2219. 

[19] J. Borras and A. M. Dollar, “A parallel robots framework to study 
precision grasping and dexterous manipulation,” in 2013 Proceedings 

IEEE International Conference on Robotics and Automation (ICRA), 
pp. 1595–1601. 

[20] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to 
Robotic Manipulation, vol. 29. CRC Press, 1994. 

[21] K. Tahara, S. Arimoto, and M. Yoshida, “Dynamic object manipulation 

using a virtual frame by a triple soft-fingered robotic hand,” in 
Proceedings 2010 IEEE International Conference on Robotics and 
Automation (ICRA),  pp. 4322–4327. 

[22] R. Ma and A. Dollar, “Yale OpenHand Project: Optimizing Open-

Source Hand Designs for Ease of Fabrication and Adoption,” IEEE 
Robot. Autom. Mag., vol. 24, no. 1, pp. 32–40, Mar. 2017. 

[23] A. Liaw and M. Wiener, “Classification and Regression by 
randomForest,” R news, vol. 2, no. December, pp. 18–22, 2002. 


