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Abstract
We propose a solution to the problem of herding by caging: given a set of mobile robots (called herders) and a group of moving
agents (called sheep), we guide the sheep to a target location without letting them escape from the herders along the way. We
model the interaction between the herders and the sheep by defining virtual “repulsive forces” pushing the sheep away from
the herders. This enables the herders to partially control the motion of the sheep. We formalize this behavior topologically by
applying the notion of caging, a concept used in robotic manipulation. We demonstrate that our approach is provably correct
in the sense that the sheep cannot escape from the robots under our assumed motion model. We propose an RRT-based path
planning algorithm for herding by caging, demonstrate its probabilistic completeness, and evaluate it in simulations as well
as on a group of real mobile robots.

Keywords Topological representation and abstraction of configuration spaces · Computational geometry · Path planning for
multiple mobile robots or agents · Motion and path planning
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1 Introduction

In this paper, we consider a problem of planning motion for a
teamof robots to guide a group ofmobile agents to a specified
goal region.The agents are referred to as sheep, and the robots
are called herding robots.

Despite the choice of terminology, the possible applica-
tions of our problem are not limited to herding animals (Lien
et al. 2005; Strömbom et al. 2014; Vaughan et al. 2000). For
instance, one can use several mobile robots working coop-
eratively to evacuate people during emergency situations,
(Garrell et al. 2009). Moreover, one could use the robot team
to either secure a team of people or to isolate a group of dan-
gerous mobile objects, e.g., drones, from humans. A similar
approach can also be applied to a team of robots to collect oil
leaked on water (Bhattacharya et al. 2015) or to keep animals
away from the runways in airports etc. (Lien et al. 2005).

We assume that the motion of the sheep is not directly
controllable, but is restricted by the driving forces imposedby
the herding robots. These forces are modelled as a distance-
based potential field, and we assume that the sheep move
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such that they want to never decrease the distance to the
herding robots. In our setting, the herding team forces the
sheep to move from an initial state to a specified goal region,
while ensuring that the sheep do not escape from the herders.

The motion process consists of two alternating phases. In
the repulsion phase, the herding robots remain static, and
the sheep move away from the herders. A potential function
strictly monotonically decreases as the distance to the clos-
est robot increases. The motion of the sheep is restricted by
this potential field, as they aim to never increase their poten-
tial during the repulsion phase. Therefore, we can control
their motion by surrounding them with the robots, so that
the robots form a closed region of high potential around the
flock. Since the sheep never increase their potential, they can-
not escape from the herders as long as they are surrounded by
a region of high potential. In contrast, in the herding phase,
when both the sheep and the robots move, the sheep can
move in any direction with a bounded velocity. We do not
make any assumptions about the direction of their motion. As
such, our system is partially controlled: we affect the motion
of the sheep only in the repulsion phase.

To provide a provable guarantee that that the sheep never
escape from the herders, we adopt the concept of caging to
formally describe the situation in which the motion of the
sheep is restricted by the herders. We address the caging
verification problem by computing homology groups of
superlevel sets of the potential function to check that the
sheep are located in a bounded region of low potential, and
therefore cannot escape from the robots. We represent the
superlevel sets as alpha shapes (Edelsbrunner and Harer
2010).

This paper extends our previous work (Varava et al. 2017)
and presents contributions on both the theoretical and the
experimental sides. We address the problem of initial cage
acquisition and provide algorithms for two different scenar-
ios: (i) when the number of herding robots is predefined
and the goal is to optimize the time needed to form a cage,
and (ii) when the goal is to minimize the number of herd-
ing robots while prioritizing caging formations that can be
reached quickly. Moreover, we perform extensive experi-
ments with a group of mobile robots. Experimental scenarios
include cage acquisition, motion in a cluttered environment
and with a narrow passage, and team reformation in case one
or more of the herding robots breaks.

2 Related work

Motion planning for a team of mobile robots is an essen-
tial problem in many real world applications, such as the
coverage control for mobile sensing networks (Cortes et al.
2004), behavior-based control for robot teams (Balch and
Arkin 1998; Lee and Kim 2017), as well as communication-

constrainedmotion planning formulti-robot systems (Pereira
et al. 2003, 2004), etc. In research on robot formation con-
trol and motion planning, the problem formulations can be
classified into three groups (Beard et al. 2001; Garrido et al.
2011): (1) A robot in a team is designated as the leader, and is
first commanded to follow a predefined pose trajectory (posi-
tion and orientation) to lead the team. The other robots in the
team are moving by following the leader while having to sat-
isfy a set of task-related geometric constraints (Tanner 2004;
Elamvazhuthi et al. 2020); (2) With the concept of virtual
structure, the robot team is modeled as a single structure, in
which the motion of each robot is translated from the desired
global structure (Egerstedt and Hu 2001a); and (3) The robot
team is desired to provide a group behavior, and each single
robot’s motion is subject to a weighted average of several
behaviors (Balch and Arkin 1998).

To the best of our knowledge, the research on formation
control has been mainly focused on the control aspect of the
formation maintenance and the motion planning for achiev-
ing the desired formations. The problem of how a team of
mobile robots can interact with moving agents, such as a
group of people or animals, and steer them to a goal region,
has received surprisingly little attention in the literature.
Schultz et al. (1996) addressed the problem using genetic
algorithms and neural networks to model the local behaviors
of flock control. In a work by Vaughan et al. (2000), a single
robot communicates with a central vision system to choose
controllers to drive the herd of ducks to the goal. Alterna-
tively, certain controllable parts of the environment (gates or
other movable obstacles) can act as agents, allowing to steer
the non-controlled mobile robots by changing the geometric
or topological properties of the scene (Durrant-Whyte et al.
2012; Fine and Shell 2013).

When modeling the passive agents’ behavior, several
researchers have assumed that they are “repulsed” from the
herders. Lien et al. (2005) provided the first work on shep-
herding behaviors with multiple shepherds and a large flock
size. They studied how multiple shepherd agents can control
another groupof agents. They assumed that the passive agents
react based on repulsive forces exerted by the shepherds and
obstacles in the environment. In a study by Bacon and Olgac
(2012), the authors used a sliding model controller to place
herders around a single evader to drive it along a desired tra-
jectory. The evader’s motion was modeled through repulsion
forces exerted by the herders within a certain sensing range.

Strömbom et al. (2014) proposed a self-propelled particle
model of local attraction–repulsion type to model herding
of a group of agents by one shepherd. In a work by Garrell
et al. (2009), the authors worked on guiding people in the
environment represented as a potential field, which enables
the authors to guide people in urban areas. Artificial poten-
tial field-based controllers for herding have also been used
by Tanner et al. (2007) and Gazi and Passino (2004). (Pier-
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son and Schwager 2018) designed control strategies to steer
noncooperative herds.

Apart from that, herding has also been formulated as a
pursuit-evasion game (Lu 2010; Shedied 2002). In the works
of Egerstedt andHu (2001b) andFerrari-Trecate et al. (2006),
agents are being relocated by driving a formation of to a
goal, based on an assumption that the sheep cooperate with
the herders. The problem of herding cows using smart collars
equippedwithGPS and sound amplifierswas also considered
by Butler et al. (2004).

The major difference between all the above mentioned
works and ours is that we employ caging formalism used
in robotic manipulation to safely (i.e., without letting them
to escape at any moment of time) and with provable guar-
antees guide a group of mobile agents to the goal region.
Caging is a way of restricting the mobility of an object with-
out immobilizing it completely. To the best of our knowledge,
this is the first application of caging in the context of steer-
ing moving agents. So far, the notion of caging has been
mostly used in robotic grasping to partially immobilize an
object under consideration (Makita and Wan 2017), or as a
waypoint to a form-closure grasp (Rodriguez et al. 2012).
Several recent works by Mahler et al. (2016a, b) extend the
notion of caging to energy-bounded caging, where physical
obstacles and energy fields (such as gravity) are utilized to
restrict the mobility of an object. These works are somewhat
related to ours as we deal with potential-based caging instead
of bounding the mobility of the sheep by physical obstacles.
However, the caging verification method proposed in our
work is different from the works by Mahler et al. (2016a, b),
where the authors consider a single static object and explic-
itly approximate its entire three-dimensional configuration
space. Instead, we consider a set of moving agents, and make
sure that they are always surrounded by a region with high
potential values by working directly in the two-dimensional
workspace.

Several works use the caging formalism to enable groups
of mobile robots to move objects. In a work by Fink et al.
(2008), a caging-based approach to multirobot manipulation
has been proposed. The authors proposed a fully-controlled
contact-based method for object transportation, while ours
achieves escorting moving agents by the partially-controlled
potential-based motion process. In their work, the object,
which is a rigid shape, is passively moved by the robots,
while in our work, a group of sheep is actively herded by
the robots by the induced virtual repulsive forces. In a work
by Bhattacharya et al. (2015), the authors use an approach
to separate and manipulate sets of objects using cables. The
main difference between these works and ours is that instead
of moving static objects, we steer moving agents, and thus
address the aspect ofmodeling and indirectly controling their
motion.

3 Problem formulation

3.1 Potential-based caging

To address our problem, we first define the notion of a cage.
According to the classical definition, an object is caged by a
caging tool if it cannot escape arbitrarily far from the caging
tool (i.e., a manipulator in robotic grasping, or a group of
robots in our context). In our setting, a sheep is caged if it
is surrounded by a region of potential higher than its own,
so that it would have to temporarily increase its potential in
order to escape from the robots.

In our work, we abstract both the sheep and the robots
as points. The goal of this paper is to define and propose a
solution to the cage-steering problem: starting from initial
position, where the flock is surrounded by the herders, we
move the latter in such away that the repulsive forces induced
by them push the flock to some predefined location.

Consider a workspaceW ⊂ R
2. Let S = {s1, s2, . . . , sm}

denote the set of sheep, andR = {r1, r2, . . . , rn} denote the
set of robots controlling their motion.1 We assume that the
robots move inW , and therefore the configuration space C of
the team is a subset of Wn . Let us denote the collision-free
subset of C by Cfree.

Let dc : W → R≥0 denote, for a given configuration c,
the distance from a point to closest robot from the set R in
this configuration. Assume that the sheep tend to keep away
from the robots. To formally describe their behaviour, we
introduce a potential function pc : W → R.

Definition 1 A potential function pc : W → R is a con-
tinuous function strictly monotonically decreasing with the
distance from x ∈ W to the closest robot from R, when the
robots are at the configuration c ∈ Cfree.

Since the potential of any point x ∈ W is uniquely defined
by the distance to the closest robot, it is convenient to use the
following notation: pd(dc(x)) = pc(x), where pd : R≥0 →
R is a distance-based potential function, and pc : W → R

is a point-based function defined for configuration c.

3.2 Themotionmodel

Let us now model the interaction between the sheep and the
robots. We consider two types of behavior: repulsion and
herding. These two types represent two different phases of
the steering process. During the repulsion phase, the robots
do not move, while the sheep can move with respect to them.
During the herding phase, both the robots and the sheep
move. In practice, the motion process consists of a sequence

1 The number of robots n does not depend on m, but, in our work,
should not be smaller than 3 in the case of a 2D workspace. Robots are
all the same and indistinguishable to the sheep.
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of alternating repulsion and herding phases. We assume that
the speed of the sheep never exceeds vs. Let us first describe
the repulsion phase.

3.2.1 Repulsion phase

Let s(t) denote the trajectory of a sheep in W during some
period of time t ∈ [0, T ]. Assume that the robots stay at the
same configuration c ∈ Cfree. Then the sheep never moves to
points of higher potential:

∀t1 < t2 ∈ [0, T ] : pc(s(t1)) ≥ pc(s(t2)).

Note that this assumption allows a more general class of
motion than just following the gradient of the potential field,
although the latter is a valid example. This also implies that
the position of the robots does not uniquely define themotion
of the flock, but rather partially restricts it.

3.2.2 Herding phase

During herding phase, the robots move between two config-
urations c0, c1 ∈ Cfree. Even though the sheep might want to
keep away from the herders during this phase as well, this
might be infeasible due to several reasons. First, they may
not be able to accurately predict the motion of the robots, and
therefore might accidentally move closer to them. Second,
the computation of a trajectory that allows the sheep to keep
as far away as possible from the herders requires a good sense
of orientation and fast reaction (in the applications where by
“sheep” we mean people or animals), and a certain compu-
tational capacity (when the passive agents are also robots).
Moreover, their perception of the herding robots’ positions
might not be precise due to noise. To keep our setting as
generic as possible, we do not make any assumptions on the
direction of the sheep during this phase, and only assume that
the speed of the sheep is bounded.

Note that while the potential value of a sheep does not
increase during the repulsive phase, it might increase during
the herding phase, see Fig. 1. This happens because during
the herding phase the robots do not control the motion of the
sheep, which makes the system only indirectly controlled.
For this reason, the herding phase is limited in time in such
a way that we can guarantee that during it the sheep will not
escape from the robots, which is possible as the sheep move
at a constant speed. In contrast, when the robots do not move
(i.e., during the repulsion phase) the sheep move in a way
that never increases their potential. Therefore, if the sheep
are properly surrounded by a region of high potential, they
never escape from the robots, and hence we do not have to
limit the duration of this phase.

Fig. 1 Three alternating motion phases are depicted in this figure. The
black curve reflects the actual dynamics of the potential value of a single
sheep s–pc(t)(s), while the grey triangles correspond to the regions of
possible values. The angle of the grey cones is determined by the sheep’s
maximal speed vs

4 Mathematical background

In this section, we explain the concepts from computational
topology we use later in the paper.

4.1 Holes, voids and homology groups

Algebraic topology aims to classify topological spaces up to
continuous deformations. One of its main tools is the com-
putation of homology groups. Intuitively, the elements of a
homology group Hi (X ) of the spaceX represent the number
of voids in X . For instance, in a 2D space the elements of
H1(X ) correspond to the holes, while in a 3D space H2(X )

represents its voids.
In this paper, we are interested in computing homology

groups in two cases. When we consider a two-dimensional
workspace W , we construct its subset X in such a way that
the potential value at any of its points is higher then in its
complementW−X . Thisway, the sheep are cagedwhen they
are located in bounded subsets of lower potential, which can
be seen as holes in X . We compute the first homology group
of X with coefficients in Z2 to find the holes. The elements
of H1(X ) are closed curves going around the holes, i.e., the
curves that cannot be continuously deformed into a point in
X . Each hole corresponds to a homology class. Since these
curves have high potential values, they bound the mobility
of the sheep located in the holes, see Fig. 2.

In the case of a three-dimensional workspace W , the
bounded subsets of low potential correspond to the voids
in the high potential subset X of W , which are represented
by its second homology group H2(X ). Similarly to the two-
dimensional case, the elements of H2(X ) are subsets of X ,
separating the voids from the remaining part ofW − X .
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4.2 Simplicial complexes

For computational reasons, it is convenient to work with
discrete versions of spaces, which can be achieved by repre-
senting them as simplicial complexes.

A geometric k−simplex σ = [v0, . . . , vk] in R
d is a

convex hull of k + 1 ordered affinely independent elements
v0, . . . , vk ∈ R

d . A convex hull of a subset of {v0, . . . , vk} is
called a face τ of the simplex σ , which is denoted by τ ≤ σ .
A finite simplicial complexK is a non-empty set of simplices
such that:

– if τ ≤ σ , then τ ∈ K,
– if σ, σ ′ ∈ K, then σ ∩ σ ′ = ∅ or σ ∩ σ ′ ∈ K

In 2D, a simplicial complexK is a set of vertices, line seg-
ments and triangles, whose intersections are either empty or
belong toK. In 3D, a simplicial complex consists of vertices,
segments, triangles and tetrahedra with the same property.

4.3 Topology of a union of balls: alpha complexes

In the next section, we deal with subsets of W represented
as unions of closed balls of a fixed radius. In particular, we
will be interested in the homology groups of these sets. Let
X = {x1, . . . , xn} be a finite set of points in R

d , and let
R > 0 be a real number. Consider a union of closed balls
with centers at points from X and radii R.

From the computational point of view, it is not easy to
compute homology groups of

⋃n
i=1 BR(xi ) directly. Fortu-

nately, this is not necessary, as we can work with its discrete
version—the alpha complex.

An alpha complex A(R) corresponding to the union of
balls

⋃n
i=1 BR(xi ) is a simplicial complex with vertices

{x1, . . . , xn} which lies strictly inside
⋃n

i=1 BR(xi ), and is
homotopy equivalent to the latter (Edelsbrunner and Harer
2010).

Given a set of points X = {x1, . . . , xn}, we can continu-
ously increase the radius and get a nested family of unions
of balls. Correspondingly, we get a nested family of alpha
complexes, X = A(R0) ⊂ A(R1) ⊂ · · · ⊂ D(X), where
D(X) is the simplicial complex corresponding to Delaunay
triangulation of X that includes faces. Any alpha complex
is a subcomplex of Delaunay triangulation of X , and since
the latter is finite, the family of nested subcomplexes is also
finite. In our work, we use this fact for cage verification.

5 Potential-based caging

We want to guarantee that the sheep are caged during repul-
sion phases, and that the herding phases are limited in time
in such a way that the sheep do not escape from the robots. In

Fig. 2 The black curve is a high potential fence induced by the robots
{x1, x2, x3, x4, x5, x6, x7, x8}. Different shades of green depict different
superlevels of the potential function. The choice of the set O is not
unique: e.g., any open set from the white and light green regions from
the interior of the curve satisfies the required conditions (Color figure
online)

this sectionweprovide the necessary definition and formalize
potential-based caging. Then, we derive sufficient conditions
for safe moves between two caging configuration—i.e., con-
ditions for the robots’motion during the herding phase. Later,
we provide the algorithm for motion planning. From now on,
we assume thatW is two-dimensional. We discuss the possi-
ble generalization to the three-dimensional case later in this
section.

Definition 2 LetRc denote the set of robots in configuration
c. A high potential fence H PF(Rc) induced by robotsR in
configuration c is a closed curve inW , such that there exists
a non-empty open set O in its interior,2 the supremum of
the potential value supx∈O(pc(x)) in which is strictly lower
than the potential of the fence, defined as pc(HPF(Rc)) =
minz∈HPF(Rc) pc(z).

Figure 2 illustrates the concept introduced above. Note
that in some situations we do not need to use all the robots
from R to form a high potential fence. Note also that some
configurations can induce several high potential fences.

Definition 3 A configuration c ∈ C is a caging configuration
if there exists a high potential fence induced by Rc.

2 By interior of a closed curve in R
2 we mean the union of bounded

connected components in its complement. Note that the term “con-
nected components” is used in the topological sense, and a closed curve
can potentially have self-intersections.
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Fig. 3 This figure depicts a caging chain formed by 5 robots. rsheep is
the radius of the circle which is guaranteed to contain the sheep at the
current moment of time. Green circles represent the area of potential,
greater or equal to the potential of the caging chain. The red region
corresponds to the caging safety margin. rrobots is the radius of the
caging circle Ω (Color figure online)

Definition 4 A sheep s is caged by the robots if it is situated
in the interior of some high potential fence, and its potential
is strictly lower than the potential of the fence.

6 Cage acquisition

6.1 Smallest cage acquisition

We now describe the algorithms for initial cage acquisition.
Here, we assume that we have the initial coordinates of herd-
ing robots and sheep, and the sheep can move in arbitrary
directions with a constant speed vs. We want to minimize the
size of the resulting cage. The maximum3 speed of the herd-
ing robots is denoted by vr. Finally, the cage safety margin
size dCSM is theminimal required distance between the sheep
and the point where the potential of a cage is the lowest, see
Fig. 3.

Let us first introduce the necessary notation, see Fig. 3.
Consider the smallest circle containing the initial locations of
the sheep, and let r0sheep and csheep be the radius and the center
of that circle at time moment 0. In other words, this circle
is guaranteed to contain all sheep. Since in our algorithm we

3 We assume that the robots do not move slower than at their maximum
speed until they reach their final positions, so we assume that it is fixed
and equal to vr.

Algorithm 1: Cage acquisition (minimal cage size)
input : robots coordinates (x1, . . . , xn),

sheep coordinates (y1, . . . , ym),
cage safety margin dCSM ,
sheep speed vs,
herders speed vr,
bisection search convergence threshold ε

output: robot trajectories {γ1, . . . , γn}
rminsheep = 0
rmaxsheep = field-size

(csheep, r0sheep) = CircumscribedCircle((y1, . . . , ym))

while rmaxsheep − rminsheep > ε do
rsheep = (rmaxsheep + rminsheep)/2
rrobots = CagingCircle(rsheep, dCSM , n)
tsheep = (rsheep − r0sheep)/vs

toptrob = tsheep
orientcur = 0
while orientcur < 2π do

for (vert j , robi ), i, j ∈ {1, . . . , n} do
Tv j ,ri = TimeForRobToVert(v j , ri )

end
Vertex = VertRobAssignment(T)

tmaxrob = maxrob∈{1,...,n} TimeToVer(rob,Vertexrob)
if tmaxrob < toptrob then

toptrob = tmaxrob
orientopt = orientcur

end
orientcur = orientcur + orientstep

end
if toptrob < tsheep then

rmaxsheep = rsheep
else

rminsheep = rsheep
end

end
for rob ∈ {1, . . . , n} do

γrob = ComputeRobotTrajectories(Vertexrob)
end
return {γ1, . . . , γn}

assume that sheep canmove in arbitrary directions, the radius
of the circle that is guaranteed to contain all sheep grows to
r tsheep at time t . Our task is to make sure that it is caged by
the herding robots by the end of the cage acquisition. For
this, we construct a regular n-sided polygon and put herding
robots at its vertices. This polygon is constructed as a regular
polygon inscribed in a caging circle Ω—a circle of radius
rrobots and center csheep. The value rrobots can be computed
given r tsheep and caging safety margin size dCSM :

rrobots − r tsheep − dCSM = rrobots · sin (π/n) (1)

This way, we ensure that the sheep never escape: between
time steps 0 and t they are guaranteed to be within the circle
of radius r tsheep, and after that this circle is located within a
cage. The Algorithm 1 proceeds as follows: first, we select
the estimated time t needed for acquiring a cage. We do this
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by performing bisection search on r tsheep between values 0
and the diameter of the field. For each r tsheep, we compute
the necessary rrobots [see Eq. (1)], and tsheep—the latest time
moment at which the sheep are still guaranteed to be within a
circle of radius r tsheep.Nowwhenwehave the center csheep and
the radius rrobots of the caging circle, we want to compute the
best n−sided polygon inscribed into it. For this, we need to
determine its orientation. We do so by checking a finite set of
possible orientations uniformly distributed from 0 to 2π with
a step orientstep. For each orientation, we then assign robots
to vertices of the resulting polygon using the least total time
tmaxrob needed to reach those positions, which is implemented
byVertRobAssignment function in Algorithms 1 and 2. Each
herding robot follows a straight line leading it to the vertex it
is assigned to. If tmaxrob does not exceed tsheep, then it is possible
to construct a cage by the moment tsheep.

6.2 Cage acquisition with theminimal number of
herding robots

In this version of the cage acquisitionAlgorithm2,wewant to
minimize the necessary number of herding robots. Similarly
to the previous case, we first perform bisection search on the
size of the cage r tsheep, and as before, we compute the time
tsheep and the cage circle radius rrobots. At each iteration of
the bisection search, we consider possible number of herding
robots from 3 to n. Given a number of herding robots, we
check if is possible to construct a cage by the time moment
tsheep.

7 Cage verification

Suppose we have an initial static configuration of robots and
a set of sheep, and we want to check whether they form a
cage. For that, we need to checkwhether the caging condition
holds, i.e., if the robots form a high potential fence such that
the sheep are located in its interior.

From the computational point of view, it is convenient to
have a discrete version of the notion of high potential fence.
Namely, we would like to deal with points and segments
instead of continuous curves. We therefore introduce the fol-
lowing definition.

Definition 5 An ordered set of robots (xa1 , . . . , xak ) that
form a high potential fence around a sheep with coordinates
y, together with segments connecting each pair of consecu-
tive robots, and the first and the last ones, forms a polygonal
chain g called caging chain.

A caging chain (see Fig. 4) is a special case of a
high potential fence. The advantage of this notion is that
a caging chain is a closed curve consisting of a finite

Algorithm 2: Cage acquisition (minimal number of
herders)
input : robots coordinates (x1, . . . , xn),

sheep coordinates (y1, . . . , ym),
cage safety margin dCSM ,
sheep speed vs,
herders speed vr,
bisection search convergence threshold ε

output: robot trajectories {γ1, . . . , γn}
overall-best-rob-num = n + 1
rminsheep = 0
rmaxsheep = field-size

(csheep, r0sheep) = CircumscribedCircle((y1, . . . , ym))

while rmaxsheep − rminsheep > ε do
best-rob-num = n + 2
rsheep = (rmaxsheep + rminsheep)/2

for robot-num ∈ {3, . . . , n} do
rrobots = CagingCircle(rsheep, dCSM , robot-num)
tsheep = (rsheep − r0sheep)/vs

toptrob = tsheep
orientcur = 0
while orientcur < 2π do

for (vert j , robi ), i, j ∈ {1, . . . , n} do
Tv j ,ri = TimeForRobToVert(v j , ri )

end
Vertex = VertRobAssignment(T)
tmaxrob = maxrob∈{1,...,n} TimeToVer(rob, Vertexrob)
if tmaxrob < toptrob then

toptrob = tmaxrob
orientopt = orientcur
best-rob-num = robot-num

end
orientcur = orientcur + orientstep

end
if best-rob-num < n + 1 then

break
end

end
if best-rob-num ≥ overall-best-rob-num then

rminsheep = rsheep
else

rmaxsheep = rsheep
overall-best-rob-num = best-rob-num

end
end
for rob ∈ {1, . . . , overall-best-rob-num} do

γrob = ComputeRobotTrajectories(Vertexrob)
end
return {γ1, . . . , γn}

number of segments, connecting pairs of robots. In other
words, a caging chain g formed by k robots with coordi-
nates (xa1 , xa2 , xa3 , . . . , xak ) can be viewed as a set of pairs
g = {(xa1, xa2), (xa2 , xa3), . . . , (xak , xa1)}. When the robots
move, the caging chain also moves and deforms; as long as
the movement preserves the cage, we can keep track of the
deformations of the initial caging chain. Assume that at some
moment of time t the new coordinates of the corresponding
robots are (xta1 , x

t
a2 , x

t
a3 , . . . , x

t
ak ), and the cage has been pre-
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Fig. 4 This figure depicts a caging chain formed by 6 robots. ω(g) is
the half of the length of the longest segment of the chain. Green circles
depict the superlevel set of the potential function, containing the caging
chain (Color figure online)

served along the way. By gt we denote the deformation of the
corresponding caging chain, which now can be considered
as gt = {(xta1, xta2), (xta2 , xta3), . . . , (xtak , xta1)}.

The width of the caging chain is defined as a half of the
length of its longest segment:
ω(g) = 1/2max(xi ,x j )∈g(length(xi , x j )). This value is
important, since it defines the lowest potential of the caging
chain: pc(g) = pd(ω(g)).

Consider a sheep s ∈ S with coordinates y, and assume
that the robots in configuration c ∈ C have coordinates
(x1, x2, . . . , xn), respectively. To verify the caging condition,
we first need to compute the high potential fences induced
by c. For that, we study the topology of the superlevel sets
of the potential function pc(y).

A superlevel set is a set of the form L+
q = {x ∈

W|pc(x) ≥ q}, where the value of the potential function
is not lower than q. To check if a given configuration forms a
cage, one can consider the topological properties of the sets
defined above. Namely, if a sheep with coordinates y ∈ W
and a potential value pc(y) < q for some positive real num-
ber q lies in the interior of some closed curve φ ⊂ L+

q , then
φ is a high potential fence by definition. Therefore, the sheep
is caged.

First of all, observe that any such curve φ cannot be con-
tracted to a point in L+

q . Therefore, ifφ ⊂ L+
q contains y in its

interior, then it represents a non-trivial class of the homology
group of the space L+

q . Moreover, if some other closed curve
φ′ ⊂ L+

q is homotopy equivalent to φ (and therefore, cor-
responds to the same element in the first homology group),
then φ′ is also a high potential fence caging the sheep at the
point y. Thus, it is enough to consider one closed curve per
first homology class in L+

q to check if L+
q has a closed curve

whose interior contains y.
Let us now interpret the shape of the set L+

q geometrically.
Since by definition any potential function strictly monotoni-
cally decreases with the distance to the set of robots, for any
q > 0 the set L+

q is in fact a union of closed balls of radius

R centred at points {x1, x2, . . . , xn}, where pd(R) = q:
L+
q = ⋃n

i=1 BR(xi ).
This observation is crucial, as it enables us to consider

discrete approximations of L+
q without losing any impor-

tant information about the topological properties of the latter.
Namely, consider an alpha complex A(R) (see Sect. 4 for the
introduction to alpha complexes). It is well known (Edels-
brunner and Harer 2010) that A(R) is homotopy equivalent
to and lies strictly inside of

⋃n
i=1 BR(xi ), and therefore pre-

serves its topological properties of interest. Moreover, each
first homology class representative of A(R) whose interior
contains y is a caging chain, as it consists of the vertices
corresponding to the positions of robots, and links between
them. Thus, the first homology group of

⋃n
i=1 BR(xi ), can

be extracted directly from A(R).
For each first homology class representative4 g of A(R)

we check if y lies inside its interior. If this is the case, then
the sheep is caged by means of the caging chain g.

Recall from Sect. 5 that we define the potential of
the fence as the potential of its weakest point, pc(φ) =
minx∈φ(pc(x)). Let us now define an optimal high poten-
tial fence:

Definition 6 Given a configuration c of robots, an optimal
potential fence is a fence of the highest possible potential.

To find an optimal potential fence, we need to find the
maximum value qmax > pc(y) for which there exists φ ⊂
L+
qmax containing y in its interior. For that, we consider a

family of sets F = {L+
q0 , L

+
q1 , . . . , L

+
qk }, where ∞ = q0 >

q1 > · · · > qk and hence L+
q0 ⊂ L+

q1 ⊂ · · · ⊂ L+
qk . Here the

family F is finite, as explained in Sect. 4.
Then qmax is the greatest value among q0 > q1 > · · · >

qk such that L+
qmax contains a closed curve whose interior

contains y.
Let us now make an important observation:

Proposition 1 The caging chains computed as first homology
class representatives of the corresponding alpha complex are
optimal.

Proof Let the sheep be located at point y, and the robots be
at a configuration c. Let the sheep be caged, and let qmax be
the potential value of the optimal high potential fence caging
the sheep. Then, there is a closed curve φ ⊂ L+

qmax , such
that y ∈ int(φ). Recall that L+

qmax = ⋃n
i=1 BR(xi ), where

pd(R) = qmax .
Consider an alpha complex A(R). Since A(R) is homo-

topy equivalent to
⋃n

i=1 BR(xi ), there exists a closed curve
φ′ � φ, φ′ ⊂ A(R) ⊂ ⋃n

i=1 BR(xi ). Therefore, φ′, and any
other closed curve from A(R), homotopy equivalent to it, is
an optimal high potential fence caging the sheep. 
�

4 We compute homology with coefficients in Z2.
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Fig. 5 This figure illustrates a typical motion of the robots dur-
ing herding phase. The robots moves from (x1, x2, x3, x4, x5) to
(x ′

1, x
′
2, x

′
3, x

′
4, x

′
5). Yellow circles depict the initial superlevel set, while

the final one is depicted in green (Color figure online)

Algorithm 3: Cage verification
input : robots coordinates (x1, . . . , xn), sheep coordinate y
output: True (if robots form a cage with sheep inside) or False

D ← Delaunay((x1, . . . , xn))
foreach L+

q ⊂ D such that q > pc(y) do
L+
q ← AlphaComplex((x1, . . . , xn))

G1 ← FirstHomologyRepresentatives(L+
q )

foreach g ∈ G1 do
if IsInsidePolygon(y, g) then

return True
end

end
end
return False

So, to check if the sheep with coordinates y is caged,
we perform the following procedure, see Algorithm 3. We
construct a Delaunay triangulation D({x1, . . . , xn}) based
on the coordinates of the robots. Then, we build a sequence
of superlevel sets (represented as alpha complexes) F =
{L+

q0 , L
+
q1 , . . . , L

+
qk }, where qk > pc(y). Note that the num-

ber of superlevel sets is finite, as only the valuesqi that change
the number of simplices in the respective superlevel sets are
considered. If there is such a superlevel set L+

qcage , in which
one of the first homology class representatives contains y in
its interior, then the sheep is caged. If there are several such
superlevel sets, we select the one with the largest potential
value. In practise, this is the same as to construct a nested
sequence of unions of closed balls with growing radii, start-
ing with R = 0 and finishing once R ≥ d(y). In its turn, the
union of balls can be replaced with the corresponding alpha
complex.

8 Safely connected cages

Recall that the sheep can move in arbitrary directions with
a constant speed during the herding phase. Therefore, we
need to derive some sufficient conditions to guarantee that the
sheep will not escape from the robots as they move between
two caging configurations c1 and c2. If the robots can move
between two configurations in this way, we call c1 and c2
safely connected. The following proposition tells us how the
robots can move during the herding phase without letting the
sheep escape far from them, see Fig. 5.

Proposition 2 Consider a potential function pc : W → R.
Assume that the robots move from a caging configuration c0
to another configuration cT , and let c(t) denote their tra-
jectory in Cfree, t ∈ [0, T ]. Let st denote the trajectory of a
sheep inW , and assume that when t = 0 the sheep is caged
by robots {r1, . . . , rk} ⊆ R. Finally, let g0 be a caging chain
formedby {r1, . . . , rk}, s0 ∈ int g0, and let gt denote its defor-
mation at time t, induced by the corresponding movement of
the robots.

Then the sheep never escapes the cage for any t ∈ [0, T ],
provided that

1. both the sheep and the robot team move with constant
non-zero speeds, vs and vr;

2. dc(0)(s0) − ω(g0) > (vs + 2 · vr) · T

Proof We need to demonstrate that for any moment of time
t ∈ [0, T ]

– the potential of the sheep is lower than the potential of
the caging chain, pc(t)(st ) < pc(t)(gt ), and

– the sheep is inside the caging chain, st ∈ int gt .

Note that the latter statement follows from the former,
provided s0 ∈ int g0. Therefore, it is enough to show that for
any t ∈ [0, T ]

pc(t)(st ) < pc(t)(gt ). (2)

From the first condition of the Proposition, for any t ∈
[0, T ] we have

dc(t)(st ) ≥ dc(0)(s0) − t · vs − t · vr.

Therefore, since p strictly monotonically decreases with
the distance to the robots, we have

pc(t)(st ) ≤ pd(dc(0)(s0) − t · vs − t · vr).

Similarly, for t ∈ [0, T ] we have

pc(t)(gt ) ≥ pd(ω(g0) + t · vr)
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To prove Eq. (2), it is enough to show that

pd(ω(g0) + t · vr) > pd(dc(0)(s0) − t · vs − t · vr), (3)

which by strict monotonicity of p() follows from

dc(0)(s0) − t · vs − t · vr > ω(g0) + t · vr, (4)

which can be written as

dc(0)(s0) − ω(g0) > t · vs + 2 · t · vr.

The latter is true for any t < T , since

dc(0)(s0) − ω(g0) > (vs + 2 · vr) · T


�
Remark 1 Instead of expressing these conditions in terms of
time and speed,we can aswell assume that the time T is fixed.
This gives us a condition on the acceptable displacement of
the robots, and we then can adjust the speed vr to satisfy the
necessary conditions from the above proposition. Let εr =
vr · T and εs = vs · T . In our implementation, we make sure
that dc(0)(s0)−ω(g0) > εs +2 ·εr . Assuming that the speed
of robots is higher than the speed of sheep, it is enough to
check that dc(0)(s0) − ω(g0) > 3 · εr .

9 Motion planning

Consider now the steering problem. Assume that we have
an initial caging configuration cinit . We need to move the
flock to the specified goal region without breaking the cage.
This means that each configuration in the path must form a
cage, and all the subsequent pairs of cages must be safely
connected. Let U be a set of all possible actions which we
can apply to a given configuration in order tomove to the next
one. Namely, each u ∈ U specifies a collection {v1, . . . , vn}
of vectors defining a movement of the system. When u is
applied, the i th robot moves from xi to xi +vi. For simplicity,
we discretize U by assuming that each robot can be moved
along some vector ekΔφ at a distance ||mΔd||, where Δφ

and Δd are the discretization steps of vector orientation
and translation, respectively. By Ccage ⊂ Cfree we denote the
subspace containing all caging configurations.

Our goal is to demonstrate that herding by caging can
be integrated with existing sampling-based motion planning
algorithms. For this purpose, we consider standard Rapidly-
exploring random tree (RRT) algorithm (LaValle andKuffner
2001). The herding by caging algorithm does not need to
specifically rely on RRT and can be combined with other
sampling-based motion planners: our contribution lies in

proposing the procedure for sampling novel configurations.
Sincemost sampling-based path planners have the same high
level structure, we used basic RRT to illustrate it. The main
goal of the experiments was therefore not to test a particular
sampling-based path planning algorithm, but rather to illus-
trate that it is possible to sample caging configurations of
different shapes in order to avoid obstacles and pass through
narrow passages.

9.1 Standard RRT: a naive approach

We start with a simple approach to motion planning—
standard RRT with rejection sampling. We sample random
configurations from C, and check whether they are (i)
collision-free, and (ii) form valid cages of the required size.
If both conditions hold, we then would search for the near-
est vertex in the RRT, and make a motion from it towards
the randomly selected configuration, so that the nearest and
the new vertices would be (i) reachable from each other by
a straight collision-free motion, and (ii) safely connected.
However, this approach does not perform well in practice,
as the probability of randomly sampling a caging configura-
tion in R

2n is small. Therefore, instead of sampling random
configurations from C, we aim to sample new configurations
biased towards the caging subset of the configuration space,
Ccage, see Algorithm 4.

Algorithm 4: RRT-based caging planner
input : configuration space C, robots initial configuration cinit ,

sheep coordinates f , workspace W
output: RRT T
T ← ∅
if CageVerification (cinit , f ) then

T ← {cinit , f }
tstart ← CurrentTime()
while time < MaxT ime do

c, f ← RandomFromTree(T )
δ ← Rand(0, 1)
if δ < 0.5 then

crand ← RandomTranslation(c)
else

crand ← RandomPerturbation(c)
end
if Extend(T , crand , W) = Reached then

break
end
time ← CurrentTime() - tstart

end
end
return T

9.2 RRT-based caging planner

Namely, we generate samples based on those caging con-
figurations which we already have. We randomly choose an
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existing configuration c from the RRT, and with probability
0.5 we apply one of the following operations to generate new
configuration crand : Random translation: in this case, crand
has the same shape as c (i.e., relative positions of the robots
are preserved), but is moved from c in a random direction
to random distance. Random perturbation: in this case, we
randomly choose a direction φi ∈ (0, 2π) for each robot,
i ∈ {1, . . . , n}, and move the i th robot in the chosen direc-
tion at a distance ε(c), where ε(c) depends on the location
of the closest sheep and the width of the caging chain, and is
defined in such away that crand is also a caging configuration.

Once we have a new random configuration crand , we are
trying to extend the RRT, see Algorithm 5. For that, we find
the nearest existing configuration cnear in the tree, and then
with probability 1−ρ we apply the action fromU that leads
us as close as possible to crand . Alternatively, with probabil-
ity ρ > 0 we apply to cnear a random action instead of the
optimal one. This is done for the sake of preserving proba-
bilistic completeness in our modification of RRT. However,
in practice our algorithm is more efficient when ρ is close
to 0.

Algorithm 5: Extend
input : RRT T , configuration crand , workspace W
output: Reached or Extended or Failed

cnear, f ← NearestNeighbor(T , crand )
δ ← Rand(0, 1)
if δ < ρ then

cnew, f ′ ← ApplyRandomAction(T , cnear , f , crand )
else

cnew, f ′ ← ApplyTheBestAction(T , cnear , f , crand )
end
if AddVertex(T , cnew , f ′, cnear , f , W) then

if cnew ∈ Cgoal then
return Reached

else
return Extended

end
else

return Failed
end

Algorithm 6: AddVertex
input : RRT T , configuration to be added cnew , sheep

coordinates corresponding to the new configuration f ′,
nearest configuration in the tree cnear , sheep coordinates
within nearest configuration f , workspace W

output: True or False

M ← GetLinearMotion(cnear , f , cnew , f ′, W)
cnew , f ′ ← LastBeforeCollision(cnear , f , M, W)
return CageVerification(cnew , f ′) and (Distance(cnear , cnew)
> ε) and AreSafelyConnected(cnear , cnew , f )

Algorithm 7: AreSafelyConnected
input : Two configurations c0 and c1, sheep coordinates s0

corresponding to the first configuration
output: True or False

Δ ← GetMaxRobotMovement(c0, c1)
return DistanceToConf(s0, c0)−ConfChainWidth(c0) > 3Δ

9.2.1 Motion verification during the herding phase

As a result of applying an action to cnear , we get a new con-
figuration cnew which wewould like to add to the tree. At this
point we need tomake sure that cnear and cnew are safely con-
nected, and there is a straight-line collision-free path between
them, see Algorithm 6. If there is no straight-line collision-
free path, we compute the closest reachable configuration on
the way to cnew instead. If it is a caging configuration and
lies at a sufficient distance from cnear , and cnear and cnew are
safely connected (by Proposition 2), we add it to the tree.

The correctness of our approach is enforced by two
verification procedures: CageVerification(cnew , f ′) and Are-
Safely Connected(cnear , cnew, f ). The former corresponds
to the caging verification during the repulsion phase and is
described in details in Algorithm 3. The latter checks the
safety during the herding phase, see Algorithm 7. Here, the
function GetMaxRobotMovement(c0, c1) computes εr from
Remark 1—the length of the paths between the initial and
the resulting positions of the robots. DistanceToConf(s0, c0)
returns dc0(s0), and ConfChainWidth(c0) returns ω(g0).

9.2.2 Probabilistic completeness

Let us now discuss probabilistic completeness of the pro-
posed algorithm. Assume that there is a sequence of con-
figurations c1, . . . , cq , such that c1 = cinit , and cq ∈
Cgoal . Assume also that there exists a sequence of actions
u1, . . . , uq−1 that when applied to c1 yields the sequence
c2, . . . , cq . Here all of the configurations are in the same
connected component of Ccage, and each pair of subsequent
configurations are safely connected.

Then we can formulate the following proposition (the
proof is almost identical to the proof of Theorem 3 from the
work by LaValle and Kuffner (2001), and we briefly recall it
here).

Proposition 3 The probability that the above proposed algo-
rithm initialized with cinit will contain a configuration from
Cgoal tends to one as the number of iterations goes to infinity.
Proof Assume the RRT contains ci as a vertex after some
finite number of iterations. Consider the Voronoi diagram
associated with the RRT vertices. Since in our implementa-
tion no two RRT vertices lie within a specified ε > 0 of each
other, the measure of the Voronoi cell μ(Vor(ci )) > 0. At
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Fig. 6 In our experiments, we use 8 mobile robots to act as herders
(black) and 3 mobile robots to act as sheep (yellow). All the robots have
the same radius of 0.12 m (Color figure online)

each iteration of the algorithm, there is a non-zero probabil-
ity p1 that ci will be selected as the nearest vertex. Since U
is finite, and we select a random action fromU with positive
probability ρ, there is a non-zero probability p2 that the right
action ui leading us to the new configuration ci+1 will even-
tually be selected. We apply this argument iteratively from
c1 to cq−1. 
�

10 Experiments withmobile robots

In this work, we first evaluate the proposed herding system
using11 low-costmobile robots shown inFig. 6.Each robot is
equipped with a three-wheeled omnidirectional mobile plat-
form, a Raspberry Pi 3B single-board computer, as well as a
LED light to show its real-time motion phase. All the robots
are localized using the VICONmotion capture system5 Dur-
ing operation, the sheep robots can acquire the locations of all
herder robots, so as to react to the potential fields generated
by the herders during the repulsion periods.

We set a constant speed for herders as vr = 0.2 m/s. The
sheep robots can operate in either the wander mode or the
escapemode. During the herding phase, the sheepmovewith
a constant speed of vHs = 0.08 m/s randomly when operating
in the wander mode, while they always move in the direction
which is opposite to the target area when operating in the
escape mode. During the repulsion phase, all the sheep move
in the opposite direction of their respective closest herder and
the speed of each sheep is determined by the potential:

pi = 0.1di , 1 ≤ i ≤ m (5)

where pi ∈ R
+ is the potential of the i-th sheep and di ∈ R

+
is its distance to the closest herder. Denoting the maximum
speed of the sheep vRs = 0.2 m/s, the speed of the i-th sheep

5 https://www.vicon.com/.

Fig. 7 The experiment is conducted in an empty space. The initial
positions of all standby herders (black) and sheep (green) are shown
(Color figure online)

Table 1 Minimal number of
herders to form cage

#Herder
Ratio # Sheep

1 2 3

0.10 3 4 4

0.25 4 4 6

0.40 4 6 8

under repulsion is then calculated by the function:

vrs = vRs

1 + e
1

−di

(6)

Unless otherwise stated, the aforementioned speeds will be
used in all experiments.

The experiment workspace has the size of 8 m × 5 m.
As will be seen shortly, we designed 6 different maps for the
experiments considering the feasibility for the scales of herd-
ing teams. The experiments conducted in this work focus on
evaluating: (a) the initial cage acquisition algorithm given
different number of sheep with different velocities; (b) the
path planning algorithm’s performance in terms of the num-
bers of herders and sheep; (c) the effect of team deformation
when the herding team passes through narrow passages; and
(d) the effect of team reformation in case any herder robot
malfunctions during the herding process.

10.1 Initial cage acquisition

The initial cage acquisition is essential to enable the herd-
ing process. In this work, given different number of sheep
with different wandering velocities, we evaluate the minimal
number of needed herders to form an initial cage, as well as
how the herders should move to achieve the initial cage. In
this experiment, we keep vr = 0.2 m/s and vary the ratio of
vHs /vr.

As shown inFig. 7,we assume that the standbyherders and
the sheep to be caged are located in an empty space. By set-
ting different speed ratios, we aim at evaluating the minimal
number of needed herders to form initial cages. The result of
the proposed initial cage acquisition algorithm is reported in
Table 1. We can see that only 3 out of 8 herders were needed
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Fig. 8 Initial cage acquisition path planning. Green dotsmark the target
sheep to be caged. Black dots are the initial positions of all the 8 standby
herders, and gray dots are the positions of the selected herders when an
initial cage is achieved (Color figure online)

when the ratio was 0.1 and there was only 1 sheep. When the
ratio increased or the number of sheep became larger, more
herders were needed to form the initial cages. This is due to
when the sheep can move faster or if there are more sheep,
the potential locations of the sheep will be distributed in a
larger area, for which we need more herders to safely form
the initial cages.

Some additional evaluations are shown in Fig. 8. In this
experiment, the initial positions of the sheep are randomized
within a small range.We target on 1, 2 or 3 sheepwith respec-
tive speed ratio of 0.1, 0.25 or 0.4 for acquiring initial cages.
In the 3 shown scenarios, 3, 5 and 8 herders were needed
and we can see that the selected herders were relatively close
to their assigned caging positions. This allows the herders
to form the caging configurations as quickly as possible in
order to avoid the sheep to further expand their potential dis-
tribution, so as to minimize the number of needed herders.

10.2 Sheepmovement modes and repulsion time

Inwander or escapemodes, sheep behave differently in terms
of their intention of escaping from the cage during the herding
phase, in which their movement do not follow the poten-
tial field. When operating in the wander mode, sheep move
randomly and their potential will accordingly be randomly
increasing or decreasing. However, since in escape mode
sheep will always move towards the closest edge of the cage,
their potential will be monotonically increasing during the
herding phase, and therefore increase their probability of
escaping from the cage.

Additionally, denoted by tH the time for each herding
phase and tR the time for each repulsion phase.While switch-
ing between herding and repulsion phases during the process,
setting different ratios of tR/tH will result in different move-
ment constraints for sheep. Intuitively, a larger ratio will give
the herders more time to constrain the movement of sheep by
exerting the potential fields. In contrast, a smaller ratio will
allow the sheep more time to move either randomly or move
in the escaping direction, which will increase the potential
during the whole process.

Fig. 9 Statistics of themaximumpotential of sheep in terms of different
movement modes and ratios of tR/tH

Fig. 10 Herding experiment inMap 1, 2 and 3. The black and gray dots
denote the sampled locations of herders during the process, the green
dots depict the locations of the sheep, and the green dash lines indicate
the target sheep . The path of the geometric center of the herding team is
shown in blue. The maximum potential of the sheep has been sampled
against all herders and were recorded during the whole process (Color
figure online)

In order to understand the effects given by the sheepmove-
ment modes and the ratio of tR/tH, we ran experiments by
setting different values for them and report the resulted statis-
tics in Fig. 9. In this experiment, we assume the initial caging
configurations are already achieved and we use 4 herders
to herd 1 sheep and repeat the same path in each of the 3
maps depicted in Fig. 10. As seen in Fig. 9, with differ-
ent ratios of tR/tH, the mean of Pmax values of the escape
mode were always higher than the wander mode as expected.
Furthermore, escape mode presented the variation ranges of
Pmax always larger than the wander mode. This is due to the
sheep operating in the wander mode tend to move around
a small area. In the escape mode, however, the sheep would
always move towards different closest caging edges, resulted
in larger movement regions relative to the caging team, and
hence generated larger variations in Pmax .

Observe inFig. 9 that,whenoperating in thewandermode,
the boxplots show more outliers than that of operating in the
escape mode. This is because the Pmax values of the wander
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Fig. 11 Herding experiments with different number of sheep. Left:
The herding path generated by the algorithm for 6 herders. Right: The
maximum potential of the sheep has been sampled against all herders
and were recorded during the whole process

mode were more concentrated in a small range, and there-
fore more data points which are not close to the mean were
considered outliers. This phenomenon can also be noticed
when comparing the outliers across different ratios of tR/tH,
for which a larger value resulted in more concentrated data
distribution around the mean, and hence more data points
were considered as outliers.

10.3 Number of herders and sheep

In this experiment, we evaluate the herding procedure in
terms of the numbers of herders and sheep. To keep the eval-
uation consistent, we set the ratio of tR/tH = 4 and set the
sheep to operate always in thewandermode.Also,we assume
the initial cages are already acquired using the proposed algo-
rithm.

As seen in Fig. 11, in order to compare the effect given by
different number of sheep, we did not minimize the number
of herders in this test, and instead always use 6 herders to herd
1, 2 and 3 sheep inmap4. For this,we initially ensured that all
the sheep will be caged using this configuration, and repeat
the same herding path for different tests. We can see from the

statistics that the Pmax values were increasing when more
sheep were herded. This is because, for the same herding
path, more sheep within the cage constrained the movement
ranges of each other, and the central area in the cage is not
available for any of the sheep. Therefore, the sheep tend to
move closer to the herders resulted in higher potential.

For evaluating the impact of the number of herders, we
evaluated the herding procedure using 4–8 herders with 1
sheep inmap 5. As depicted in Fig. 12, due to the shape of the
herding teams were different for different number of herders,
the herding paths were accordingly different to ensure shape
specific collision-free paths. The statistics reported in Fig. 12
show that the Pmax valueswere increasingwhilemore herders
were involved in the task. This does not mean that more
herders would make the herding procedure more risky. In
contrast, more herders would increase the potential fields
surrounding the sheep to givenmore constraints to the sheep’s
movements. Therefore, although the Pmax were higher when
using more herders, it is in fact more robust for herding.

10.4 Team deformation

After an initial caging configuration is acquired, the herd-
ing team has to pass through different structures in the map
to reach the destination. During this procedure, there can be
narrow passages which the herding team cannot pass with-
out collision if it does not deform to adapt to the shape of the
narrow passage. In order to achieve this, the proposed plan-
ner (Algorithm 4) introduced a random perturbation term for
adjusting the shape of the herding team during path planning.
As such, the planning algorithm is able to deform the herding
team while still ensuring a caging configuration.

In this experiment, we use 4 herders to herd 1 sheep in
map 6, in which we designed a narrow passage to force team
deformation. As seen in Fig. 13, the herding team was not
able to directly pass through the narrow passage. As such, it
was gradually deformed into narrower shapes to fit through,
and then resumed to a normal shape to finally reach the des-
tination.

Fig. 12 Herding experiments with different number of herders. Left: Herding path for 4–8 herders. Right: The maximum potential of the sheep
has been sampled against all herders and were recorded during the whole process
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Fig. 13 Herding experiment with team deformation. When passing
through the narrow passage, the team deformation process is depicted
by a close-up figure on the right. In the deformation procedure, the shape
of the herding team was changing in the order of red, yellow, green and
blue, and then resumed to the normal shape (Color figure online)

Fig. 14 The maximum potential of the sheep has been sampled against
all herders and were recorded during the whole process

The Pmax values during this herding procedure is reported
in Fig. 14. We can observe that the Pmax values were
relatively small and varied in a small range. Once the defor-

mation started, the Pmax values significantly increased and
started oscillating largely. Thereafter, the Pmax returned to
a small range after the team shape resumed to the nor-
mal situation. This result shows that the proposed path
planning algorithm is able to handle the cases where
team deformation is required, while ensuring that the
caging configurations will be kept to finally achieve the
task.

10.5 Team reformation

During a herding task, it is possible that one or more
of the herders will be broken or malfunctioning in the
middle of the procedure. In those cases, instead of using
the minimum number of herders, if we in the beginning
assigned redundant herders in the team, we can still com-
plete the task by reforming the team at the time of fail-
ures. In this experiment, we set the sheep to operate in
the wander mode, and conducted 2 tests with redundant
herders: (1) 7 herders to herd 2 sheep and (2) 5 herders
to herd 1 sheep. During the herding process, we artificially
designate one herder malfunction forcing it to leave the
team, and then we trigger the initial cage acquisition algo-
rithm to reform the team shape in order to continue the
task.

The experiment results are reported in Fig. 15. We can
observe that the Pmax values before and after the reforma-
tions were similar, which demonstrated a similar effect as
in the previous experiments in Fig. 12. Note that in both
tests, there were a sudden increase of the Pmax values, which
was caused by the malfunctioning of one of the herders
which introduced a less constrained system during that short
period.

Fig. 15 Herding experiments with team reformation caused by the failure of 1 herder during the process. The shape reformation processes are
depicted in red. Left: 7 herders with 2 sheep. Right: 5 herders with 1 sheep (Color figure online)
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Fig. 16 The obstacles are depicted in grey; the goal region is the blue
square; the black dots correspond to the initial configuration of the
robots, the green dots depict the current configuration, and the red dots
are the robots in the final configuration. The potential field induced by
the current configuration is depicted in red. In the second environment,
the 3 remaining goals are depicted in green (Color figure online)

11 Experiments in simulated environments

In this section, we present our initial experimental results
obtained in simulations. Here, we investigate how our herd-
ing algorithm performs in cluttered environments and in the
presence of narrow passages.

Currently, no finite time convergence guarantees for
sampling-based motion planners, such as RRT, exist in liter-
ature (Dantam et al. 2018). This means that it is generally
impossible to exactly determine whether there is no path
between the start and the goal, or if the planner needs more
iterations to find it. Thus, in practice, it is common to rely
on heuristic stopping criteria, such as a time out (30 s in our
experiments) or the maximum number of samples.

In our experiments, we want to investigate whether our
algorithm is able to compute paths in the presence of nar-
row passages and randomized cluttered environments. For
this, we construct workspaces with narrow passages of dif-
ferent width, and experimentally evaluate the success rate of
the planner. We use the simulated environment to quantita-
tively evaluate the computation time and the success rate of
our algorithm, as such complex scenes would be difficult to
construct in our indoor environment.

We consider two types of workspaces and run our algo-
rithm with the different number of robots. We run our
experiments on an Intel i7 CPU laptop with 12 GB of RAM.

11.1 Narrow passages

In our first experiment, we consider a family of simple rect-
angular workspaces containing two polygonal obstacles and
a narrow passage between them (Fig. 16, left side). Our goal
is to see how the efficiency of our algorithm depends on
d(R)/w(C), where w(C) denotes the width of the narrow
passage, and d(R) is the maximal distance between any two
robots in the initial configuration. In other words, we would

Table 2 The average computation time of the successful runs and the
success rate in the presence of narrow passages

d(R)

w(C)
4 robots 5 robots 6 robots 7 robots

1.0 1.7 s, 96% 2.0 s, 91% 3.1 s, 89% 4.3 s, 79%

0.9 2.8 s, 89% 2.9 s, 87% 1.5 s, 77% 4.3 s, 76%

0.8 2.9 s, 79% 3.3 s, 86% 1.8 s, 57% 2.7 s, 71%

0.7 3.7 s, 73% 3.5 s, 62% 3.3 s, 44% 9.9 s, 44%

0.6 7.1 s, 45% 2.9 s, 26% 3.5 s, 20% 8.6 s, 26%

Table 3 The average computation time of the successful runs and the
success rate in randomized cluttered environments

Goal 4 robots 5 robots 6 robots 7 robots

1 6.9 s, 87% 7.5 s, 91% 7.3 s, 80% 6.5 s, 86%

2 7.0 s, 87% 5.2 s, 90% 10.5 s, 69% 9.9 s, 96%

3 17.1 s, 16% 5.2 s, 1% 6.3 s, 2% 5.9 s, 2%

4 2.9 s, 96% 5.3 s, 90% 7.4 s, 89% 4.7 s, 91%

like to see how well the robots can change the shape of their
formation without breaking the cage, when they have to go
through narrow passages. We perform experiments with 4,
5, 6, and 7 robots respectively. We consider 20 random ini-
tial configurations and run the algorithm 50 times for each
of them. We interrupt it after 30 s in case the solution has
not been found. We compute the average execution time in
seconds, as well as the success rate (the percentage of suc-
cessful runs). Since this workspace is very simple, and the
main difficulty is to find the path through the narrow passage,
we consider only one goal region, and all the initial configu-
rations are located on the opposite side of the workspace.

The Table 2 presents the result of the experiment. We
see that for d(R)/w(C) between 0.8 and 1.0 our algorithm
performs quite well. However, we can observe that as we
decrease the width of the passage, the success rate signifi-
cantly decreases. This likely is the case because our algorithm
cannot explore the caging space well enough within 30 sec-
onds, as the shapes of the new configurations are biased
towards those which are already in the tree.

11.2 Random polygons

In the second experiment, we consider a more complex envi-
ronment (Fig. 16, right side). As before, we analyze howwell
our algorithms perform depending on the number of robots:
4, 5, 6, and 7. We consider 4 different goal regions and 20
random initial configurations. We run the algorithm 50 times
for each combination of the start and the goal. We interrupt
it after 30 s in case the solution has not been found.

The Table 3 presents the result of the experiment. This
experiments shows the performance of our algorithm in a
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cluttered environment. Here, we can see that the Goal 3 is
practically unreachable within 30s. This happens because
it is densely surrounded with obstacles, and therefore the
shape of the configurations in the path should be significantly
different from the shape of the initial one.

12 Conclusion and future work

In this paper, we extend our previous work and present an
approach towards herding by caging: given a set of mobile
robots in the two-dimensional workspace, we partially con-
trol the set of moving objects (called sheep) by means of
the potential field induced by repulsive forces exerted by
the robots. To guarantee that the sheep cannot escape from
the herders, we formalize the problem using the concept of
potential-based caging.

We present cage acquisition and verification algorithms.
The caging verification problem is addressed using a classical
tool from algebraic topology—homology groups. Further-
more, we propose an RRT-based algorithm for path planning
and show that it preserves an important advantage of RRT—
probabilistic completeness. We implement our algorithms
and analyze their performance in simulated and real-world
experiments.

Currently, we assume that the robots are controlled in a
centralized way: the positions of all robots are known to the
central planning algorithm. In the future, it would be interest-
ing to relax this assumption and extend themethod to the case
where the robots need to make decisions in a de-centralized
way and address the challenges arising from limited commu-
nication between them.

In the future, we plan to extend the work to the case of 3-
dimensional workspaces. Our theoretical framework can be
generalized to this case, as instead of 1-homology generators
capturing holes we can consider 2-dimensional generators,
capturing voids. As before, a potential function p : W → R

has to be continuous and strictly monotonically decreasing
as the distance from the point to the set of robots increases,
and the same assumption regarding the motion of the flock
is made. A high potential fence can be considered as a high
potential subset HPS ofW , such that at least one connected
component of W − HPS is bounded. Proposition 1 could
then be generalized, as the dimensionality of the space does
not play a crucial role in the proof. The implementation and
experiments, however, will require some additional work and
technical considerations.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10514-021-09975-
8.
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