
Herding by Caging: a Topological Approach
towards Guiding Moving Agents via Mobile Robots

Anastasiia Varava∗, Kaiyu Hang†, Danica Kragic∗, and Florian T. Pokorny∗
∗ Robotics, Perception, and Learning Lab, Centre for Autonomous Systems, School of Computer Science and Communication,

Royal Institute of Technology (KTH), Stockholm, Sweden
{varava, dani, fpokorny}@kth.se

† Robotics Institute and Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong
kaiyuh@ust.hk

Abstract—In this paper, we propose a solution to the problem
of herding by caging: given a set of mobile robots (called herders)
and a group of moving agents (called sheep), we move the latter
to some predefined location in such a way that they cannot escape
from the robots while moving. We model the interaction between
the herders and the sheep by assuming that the former exert
virtual “repulsive forces” pushing the sheep away from them.
These forces induce a potential field, in which the sheep move
in a way that does not increase their potential. This enables the
robots to partially control the motion of the sheep. We formalize
this behavior geometrically by applying the notion of caging,
widely used in robotic grasping. We show that our approach is
provably correct in the sense that the sheep cannot escape from
the robots. We propose an RRT-based motion planning algorithm,
demonstrate its probabilistic completeness, and evaluate it in
simulations.

I. INTRODUCTION AND RELATED WORK

In this work, we propose an approach towards guiding
mobile agents called herding by caging. We are interested
in the problem of driving the motion of a group of mobile
agents, which we call sheep, by a team of robots. Robots in
the driving team that provides driving forces are called herding
robots. The driving forces imposed by the herding robots are
modelled by a distance-based potential field, and we assume
that the motion of the sheep is restricted by the forces imposed
by the herding robots.

Motion planning for a team of mobile robots is an essential
problem in many real world applications, such as the cover-
age control for mobile sensing networks [5], behavior-based
control for robot teams [1], and communication-constrained
motion planning for multi-robot systems [16], etc. In research
on robot formation control and motion planning, the problem
formulations can be classified into three groups [2, 10]: 1)
A robot in a team is designated as the leader, and is first
commanded to follow a predefined pose trajectory (position
and orientation) to lead the team. The other robots in the team
are moving by following the leader while having to satisfy
a set of task-related geometric constraints [21]; 2) With the
concept of virtual structure, the robot team is modeled as a
single structure, in which the motion of each robot is translated
from the desired global structure [7]; and 3) The robot team
is desired to provide a group behavior, and each single robot’s

motion is subject to a weighted average of several behaviors
[1].

However, to the best of our knowledge the research has
been mainly focused on the control aspect of the formation
maintenance and the motion planning for achieving the desired
formations. The problem of how a team of mobile robots can
interact with moving agents, such as a group of people or
animals, is not widely addressed. In particular, we consider
a scenario where a group of “active” agents (mobile robots)
controls the motion of “passive” agents by exerting repulsive
forces. The “passive” agents tend to keep away from the
“active” ones, which is usually formalized by introducing a
distance-based potential field induced by the virtual repulsive
forces exerted by the latter.

The possible applications of our problem are not limited to
herding animals, [13, 20, 23]. For instance, one can use several
mobile robots working cooperatively to evacuate people during
emergency situations, [9]. Moreover, one could use the robot
team to either secure a team of people or to isolate a group
of dangerous mobile objects, e.g., drones, from humans. A
similar approach can also be applied to a team of robots to
collect oil leaked on water, [3], or to keep animals away from
the runways in airports etc., [13].

In [18, 23], the shepherding behavior of robots has been
proposed for a small robot team (≤ 3 robots). The authors
addressed the problem using genetic algorithms and neural
networks to model the local behaviors of flock control. In [13],
the authors provided the first work on shepherding behaviors
with large flock size. In [20], the authors propose a self-
propelled particle model of local attraction-repulsion type to
model herding of a group of agents by one shepherd. The
problem of herding cows using smart collars equipped with
GPS and sound amplifiers was also considered in [4]. In [9] the
authors work on guiding people in the environment represented
as a potential field, which enables the authors to guide people
in urban areas. Artificial potential field-based controllers for
herding have also been used in [22, 11]. This approach is also
analyzed in [19].

In our setting, the herding team forces the sheep to move
from an initial state to a specified goal region in arbitrary
maps in both 2D and 3D, while ensuring that the sheep do



not escape from the herders. We formulate the problem as a
motion planning problem for the herding team. We adopt the
concept of caging to formally describe the situation in which
the motion of the sheep is restricted by the herders.

Caging is a way of restricting the mobility of an object with-
out immobilizing it completely, [17]. For this, representations
of physical obstacles and energy fields (such as gravity) can
be utilized, [14]. So far, the notion of caging has been mostly
used in robotic grasping. In [8], a caging-based approach to
multirobot manipulation has been proposed. In [3], the authors
use an approach to separate and manipulate sets of objects
using cables.

We address the caging verification problem by computing
homology groups of superlevel sets of the potential function to
check that the sheep are located in a bounded region of low
potential, and therefore cannot escape from the robots. We
represent the superlevel sets as alpha complexes, [6]. Alpha
complexes have been used before for proving caging (path
non-existence), for instance, in [14, 15].

The motion process consists of two alternating phases. In
the repulsion phase, the robots remain static, and the sheep
move away from the herders. A potential function strictly
monotonically decreases as the distance to the closest robot
increases. The motion of the sheep is restricted by this
potential field, as they aim to never increase their potential
during the repulsion phase. Therefore, we can control their
motion by surrounding them with the robots, so that the robots
form a closed region of high potential around the flock. Since
the sheep never increase their potential, they cannot escape
from the herders as long as they are surrounded by a region
of high potential.

However, in the herding phase, when both the sheep and
the robots move, the sheep can move in any direction with
a bounded velocity. We do not make any assumptions about
the direction of their motion. As such, our system is partially
controlled: we affect the motion of the sheep only in the
repulsion phase.

The contributions in this work can be summarized as
follows: first, we formulate the problem of guiding a group of
mobile agents as herding by caging, and propose a rigorous
caging verification method using techniques from compu-
tational topology. Second, we provide an RRT-based robot
team motion planning algorithm using the above mentioned
verification procedure, and demonstrate that the proposed
algorithm is probabilistically complete. Finally, we implement
our algorithm in a 2D-workspace and analyze the possibility
of generalizing our approach to the 3D case.

II. PROBLEM FORMULATION

A. Potential-based Caging

To address our problem, we first define the notion of a cage.
According to the classical definition, an object is caged by a
caging tool if it cannot escape arbitrarily far from the the
caging tool (i.e., a manipulator in robotic grasping, or a group
of robots in our context). In our setting, a sheep is caged if
it is surrounded by a region of potential higher than its own,

so that it would have to temporarily increase its potential in
order to escape from the robots.

In this work, we call the passive agents “sheep”, even
though the possible applications are not limited to herding
animals. The active agents are referred to as “herders”. We
abstract both the sheep and the robots as points. The goal
of this paper is to define and propose a solution to the cage-
steering problem: starting from initial position, where the flock
is surrounded by the herders, we move the latter in such a
way that the repulsive forces induced by them push the flock
to some predefined location.

Consider a workspace W ⊂ Rd. Let S = {s1, s2, .., sm}
denote the set sheep, and R = {r1, r2, .., rn} denote the set of
robots controlling their motion. 1 We assume that the robots
move in W , and therefore the configuration space C of the
team is a subset ofWn. Let us denote the collision-free subset
of C by Cfree.

Let dc :W → R denote the distance from a point to closest
robot from the set R. Assume that the sheep tend to keep
away from the robots. To formally describe their behaviour,
we introduce a potential function pc :W → R.

Definition 1: A potential function pc : W → R is a
continuous function strictly monotonically decreasing with the
distance from x ∈ W to the closest robot from R, when the
robots are at the configuration c ∈ Cfree.

Since the potential of any point x ∈ W is uniquely defined
by the distance to the closest robot, it is convenient to use the
following notation: pd(dc(x)) = pc(x), where pd : R≥0 → R
and pc :W → R

B. The Motion Model

Let us now model the interaction between the sheep and
the robots. We consider two types of behavior: repulsion and
herding. These two types represent two different phases of
the steering process. During the repulsion phase, the robots
do not move, while the sheep can move with respect to them.
During the herding phase, both the robots and the sheep move.
In practice, the motion process consists of a sequence of
alternating repulsion and herding phases. We assume that the
velocity of the sheep never exceeds vs. Let us first describe
the repulsion phase.

1) Repulsion Phase: Let s(t) denote the trajectory of a
sheep in W during some period of time t ∈ [0, T ]. Assume
that the robots stay at the same configuration c ∈ Cfree. Then
the sheep never moves to points of higher potential:

∀t1 < t2 ∈ [0, T ] : pc(s(t1)) ≥ pc(s(t2)).

Note that this assumption allows a more general class of
motion than just following the gradient of the potential field,
although the latter is a valid example. This also implies that
the position of the robots does not uniquely define the motion
of the flock, but rather partially restricts it.

1The number of robots n does not depend on m, but cannot be smaller
than 3 in the case of a 2D workspace.



2) Herding Phase: During herding phase, the robots move
between two configurations c0, c1 ∈ Cfree. Even though the
sheep might want to keep away from the herders during this
phase as well, this might be infeasible due to several reasons.
First, they may not be able to accurately predict the motion
of the robots, and therefore might accidentally move closer
to them. Second, the computation of an optimal trajectory
requires a good sense of orientation and fast reaction (in the
applications where by “sheep” we mean people or animals),
and a certain computational capacity (when the passive agents
are also robots). Moreover, their perception of the herding
robots’ positions might not be precise due to noise. To keep our
setting as generic as possible, we do not make any assumptions
on the direction of the sheep during this phase, and only
assume that the velocity of the sheep is bounded.

Fig. 1. Three alternating motion phases are depicted in this figure. The black
curve reflects the actual dynamics of the potential value of a single sheep s –
pc(t)(s), while the grey triangles correspond to the regions of possible values.
The angle of the grey cones is determined by the sheep’s maximal velocity
vs.

Note that while the potential value of a sheep does not
increase during the repulsive phase, it might increase during
the herding phase, see Fig. 1. This happens because during
the herding phase the robots do not control the motion of the
sheep, which makes the system only partially controlled. For
this reason, the herding phase is limited in time in such a way
that we can guarantee that during it the sheep will not escape
from the robots, which is possible as the sheep move at a
constant velocity. In contrast, when the robots do not move
(i.e., during the repulsion phase) the sheep move in a way
that never increases their potential. Therefore, if the sheep are
properly surrounded by a region of high potential, they never
escape from the robots, and hence we do not have to limit the
duration of this phase.

III. MATHEMATICAL BACKGROUND

In this section, we explain the concepts from computational
topology we use later in the paper.

A. Holes, Voids and Homology Groups

Algebraic topology aims to classify topological spaces up
to continuous deformations. One of its main tools is the
computation of homology groups. Intuitively, the dimension
of the ith homology group Hi(X ) of the space X represents
the number of i−dimensional “voids” in X . For instance, in
a 2D space the elements of H1(X ) correspond to the “holes”,
while in a 3D space H2(X ) represents its “voids”.

In this paper, we are interested in computing homology
groups in two cases. When we consider a two-dimensional
workspace W , we construct its subset X in such a way that
the potential value at any of its points is higher then in its
complementW−X . This way, the sheep are caged when they
are located in bounded subsets of lower potential, which can be
seen as “holes” in X . We compute the first homology group of
X with coefficients in Z2 to find these “holes”. The elements
of H1(X ) are closed curves going “around” the “holes”, i.e.,
the curves that cannot be continuously deformed into a point in
X . Each “hole” corresponds to a homology class. Since these
curves have high potential values, they bound the mobility of
the sheep located in the “holes”, see Fig.2.

In the case of a three-dimensional workspace W , the
bounded subsets of low potential correspond to the “voids”
in the high potential subset X of W , which are represented
by its second homology group H2(X ). Similarly to the two-
dimensional case, the elements of H2(X ) are subsets of X ,
separating the “voids” from the remaining part of W −X .

B. Simplicial Complexes

For computational reasons, it is convenient to work with
discrete versions of spaces, which can be achieved by repre-
senting them as simplicial complexes.

A geometric k−simplex σ = [v0, .., vk] in Rd is a convex
hull of k+1 ordered affinely independent elements v0, .., vk ∈
Rd. A convex hull of a subset of {v0, .., vk} is called a face
τ of the simplex σ, which is denoted by τ ≤ σ. A finite
simplicial complex K is a non-empty set of simplices such
that:
• if τ ≤ σ, then τ ∈ K,
• if σ, σ′ ∈ K, then σ ∩ σ′ = ∅ or σ ∩ σ′ ∈ K
In 2D, a simplicial complex K is a set of vertices, line

segments and triangles, whose intersections are either empty or
belong to K. In 3D, a simplicial complex consists of vertices,
segments, triangles and tetrahedra with the same property.

C. Topology of a Union of Balls: Alpha Complexes

In the next section, we deal with subsets of W represented
as unions of closed balls of a fixed radius. In particular, we
will be interested in the homology groups of these sets. Let
X = {x1, .., xn} be a finite set of points in Rd, and let R > 0
be a real number. Consider a union of closed balls with centers
at points from X and radii R.

From the computational point of view, it is not easy to com-
pute homology groups of

⋃n
i=1BR(xi) directly. Fortunately,

this is not necessary, as we can work with its discrete version
– the alpha complex.

An alpha complex A(R) corresponding to the union of balls⋃n
i=1BR(xi) is a simplicial complex with vertices {x1, .., xn}

which lies strictly inside
⋃n
i=1BR(xi), and is homotopy

equivalent to the latter [6].
Given a set of points X = {x1, .., xn}, we can continuously

increase the radius and get a nested family of unions of balls.
Correspondingly, we get a nested family of alpha complexes,
∅ = A(R0) ⊂ A(R1) ⊂ .. ⊂ D(X), where D(X) is



the Delaunay triangulation of X . Any alpha complex is a
subcomplex of Delaunay triangulation of X , and since the
latter is finite, the family of nested subcomplexes is also finite.
In our work, we use this fact for cage verification.

IV. METHODOLOGY

We want to guarantee that the sheep are caged during
repulsion phases, and that the herding phases are limited in
time in such a way that the sheep do not escape from the
robots. In this section we provide the necessary definition and
formalize potential-based caging. Then, we derive sufficient
conditions for safe moves between two caging configuration
– i.e., conditions for the robots’ motion during the herding
phase. Later, we provide the algorithm for motion planning.
From now on, we assume that W is two-dimensional. We
discuss the possible generalization to the three-dimensional
case later in this section.

Definition 2: Let Rc denote the set of robots in configura-
tion c. A high potential fence HPF (Rc) induced by robots
R in configuration c is a closed curve in W , such that
there exists a non-empty open set O in its interior 2, the
supremum of the potential value supx∈O(pc(x)) in which
is strictly lower than the potential of the fence, defined as
pc(HPF (Rc)) = minz∈HPF (Rc) pc(z).

Fig. 2. The black curve is a high potential fence induced by the robots
{x1, x2, x3, x4, x5, x6, x7, x8}. Different shades of grey depict different
superlevels of the potential function. The choice of the set O is not unique:
e.g., any open set from the white and light grey regions from the interior of
the curve satisfies the required conditions.

Fig. 2 illustrates the concept introduced above. Note that in
some situations we do not need to use all the robots from R to
form a high potential fence. Note also that some configurations
can induce several high potential fences.

Definition 3: A configuration c ∈ C is a caging configura-
tion if there exists a high potential fence induced by Rc.

Definition 4: A sheep s is caged by the robots if it is
situated in the interior of some high potential fence, and its
potential is strictly lower than the potential of the fence.

A. Cage verification

Suppose we have an initial static configuration of robots
and a set of sheep, and we want to check whether they form a

2By interior of a closed curve in R2 we mean the union of bounded
connected components in its complement.

cage. For that, we need to check whether the caging condition
holds, i.e., if the robots form a high potential fence such that
the sheep are located in its interior.

Fig. 3. This figure depicts a caging chain formed by 5 robots. ω(g) is the
length of the longest segment of the chain. Grey circles depict the superlevel
set of the potential function, containing the caging chain.

From the computational point of view, it is convenient to
have a discrete version of the notion of high potential fence.
Namely, we would like to deal with points and segments
instead of continuous curves. We therefore introduce the
following definition.

Definition 5: An ordered set of robots (xa1 , .., xak) that
form a high potential fence around a sheep with coordinates
y, together with segments connecting each pair of consecutive
robots, and the first and the last ones, forms a polygonal chain
g called caging chain.

A caging chain (see Fig. 3) is a special case of a
high potential fence. The advantage of this notion is that
a caging chain is a closed curve consisting of a finite
number of segments, connecting pairs of robots. In other
words, a caging chain g formed by k robots with coordi-
nates (xa1 , xa2 , xa3 , .., xak) can be viewed as a set of pairs
g = {(xa1 , xa2), (xa2 , xa3), .., (xak , xa1)}. When the robots
move, the caging chain also moves and deforms; as long as
the movement preserves the cage, we can keep track of the
deformations of the initial caging chain. Assume that at some
moment of time t the new coordinates of the corresponding
robots are (xta1 , x

t
a2 , x

t
a3 , .., x

t
ak

), and the cage has been pre-
served along the way. By gt we denote the deformation of the
corresponding caging chain, which now can be considered as
gt = {(xta1 , x

t
a2), (xta2 , x

t
a3), .., (xtak , x

t
a1)}.

The width of the caging chain is defined as the maximal
distance from any point of the chain g to the set of robots
forming it, which is the same as a half of the length of its
longest segment: ω(g) = 1/2 max(xi,xj)∈g(length(xi, xj)).

This value is important, since it defines the lowest potential
of the caging chain: pc(g) = pd(ω(g)).

Consider a sheep s ∈ S with coordinates y, and assume
that the robots in configuration c ∈ C have coordinates
(x1, x2, .., xn), respectively. To verify the caging condition,
we first need to compute the high potential fences induced by
c. For that, we study the topology of the superlevel sets of the
potential function pc(y).

A superlevel set is a set of the form L+
q = {x ∈ W|pc(x) ≥

q}, where the value of the potential function is not lower than
q. To check if a given configuration forms a cage, one can



consider the topological properties of the sets defined above.
Namely, if a sheep with coordinates y ∈ W and a potential
value pc(y) < q for some positive real number q lies in the
interior of some closed curve φ ⊂ L+

q , then φ is a high
potential fence by definition. Therefore, the sheep is caged.

Let first us assume that given the position of the sheep y and
a real number q > pc(y), we want to check whether the sheep
is caged by some high potential fence, whose potential value is
not lower than q. For this it is enough to check whether there
exists a closed curve φ ⊂ L+

q , whose interior contains y. First
of all, observe that any such curve φ cannot be contracted to
a point in L+

q . Therefore, if φ ⊂ L+
q contains y in its interior,

then it represents a non-trivial class of the homology group of
the space L+

q . Moreover, if some other closed curve φ′ ⊂ L+
q

is homotopy equivalent to φ (and therefore, corresponds to the
same element in the first homology group), then φ′ is also a
high potential fence caging the sheep at the point y. Thus,
it is enough to consider one closed curve per first homology
class in L+

q to check if L+
q has a closed curve whose interior

contains y.
Let us now interpret the shape of the set L+

q geometrically.
Since by definition any potential function strictly monoton-
ically decreases with the distance to the set of robots, for
any q > 0 the set L+

q is in fact a union of closed balls of
radius R centred at points {x1, x2, .., xn}, where pd(R) = q:
L+
q =

⋃n
i=1BR(xi).

This observation is crucial, as it enables us to consider
discrete approximations of L+

q without losing any important
information about the topological properties of the latter.
Namely, consider an alpha complex A(R) (see Section III
for the introduction to alpha complexes). It is well-known
([6]) that A(R) is homotopy equivalent to and lies strictly
inside of

⋃n
i=1BR(xi), and therefore preserves its topological

properties of interest. Moreover, each first homology class
representative of A(R) whose interior contains y is a caging
chain, as it consists of the vertices corresponding to the
positions of robots, and links between them. Thus, the first
homology group of

⋃n
i=1BR(xi), can be extracted directly

from A(R).
For each first homology class representative3 g of A(R) we

check if y lies inside its interior. If this is the case, then the
sheep is caged by means of the caging chain g.

Let us now find an optimal high potential fence – i.e., a
fence of the highest possible potential. Recall from Section II
that we define the potential of the fence as the potential of its
weakest point, pc(φ) = minx∈φ(pc(x)). Therefore, we need
to find the maximum value qmax > pc(y) for which there
exists φ ⊂ L+

qmax
containing y in its interior. For that, we

consider a family of sets F = {L+
q0 , L

+
q1 , .., L

+
qk
}, where ∞ =

q0 > q1 > .. > qk > pc(y) and hence L+
q0 ⊂ L+

q1 ⊂ .. ⊂ L+
qk
.

Here the family F is finite, as explained in Sec. III.
Then qmax is the greatest value among q0 > q1 > .. >

qk such that L+
qmax

contains a closed curve whose interior
contains y.

3We compute homology with coefficients in Z2

Let us now make an important observation:
Proposition 1: The caging chains computed as first homol-

ogy class representatives of the corresponding alpha complex
are optimal.

Proof: Let the sheep be located at point y, and the robots
be at a configuration c. Let the sheep be caged, and let qmax be
the potential value of the optimal high potential fence caging
the sheep. Then, there is a closed curve φ ⊂ L+

qmax
, such

that y ∈ int(φ). Recall that L+
qmax

=
⋃n
i=1BR(xi), where

pd(R) = qmax. Consider an alpha complex A(R). Since A(R)
is homotopy equivalent to

⋃n
i=1BR(xi), there exists a closed

curve φ′ ' φ, φ′ ⊂ A(R) ⊂
⋃n
i=1BR(xi). Therefore, φ′, and

any other closed curve from A(R), homotopy equivalent to it,
is an optimal high potential fence caging the sheep.

So, to check if the sheep with coordinates y is caged, we
perform the following procedure, see Alg. 1. We construct a
Delaunay triangulation D({x1, .., xn}) based on the coordi-
nates of the robots. Then, we build a sequence of superlevel
sets (represented as alpha complexes) F = {L+

q0 , L
+
q1 , .., L

+
qk
},

where qk > pc(y). If there is such a superlevel set L+
qcage

,
in which one of the first homology class representatives
contains y in its interior, then the sheep is caged. If there are
several such superlevel sets, we select the one with the largest
potential value. In practise, this is the same as to construct a
nested sequence of unions of closed balls with growing radii,
starting with R = 0 and finishing once R ≥ d(y). In its turn,
the union of balls can be replaced with the corresponding alpha
complex.

Algorithm 1: Cage verification
input : robots coordinates (x1, .., xn), sheep coordinate y
output: ∆p

∆p = 0
D ← Delaunay((x1, .., xn))
foreach L+

q ⊂ D such that q > pc(y) do
L+
q ← AlphaComplex((x1, .., xn),dc(y))
G1 ← FirstHomologyRepresentatives(L+

q )
foreach g ∈ G1 do

if IsInsidePolygon(y, g) then
∆p← q
Break

end
end

end
return ∆p

B. Safely Connected Cages

Recall that we make no assumptions about the trajectories
of the sheep during the herding phase. Therefore, we need to
derive some sufficient conditions to guarantee that the sheep
will not escape from the robots as they move between two
caging configurations c1 and c2. If there exists such a safe
path between these two configurations, we call c1 and c2 safely
connected. The following proposition tells us how the robots
can move during the herding phase without letting the sheep
escape far from them, see Fig. 4:

Proposition 2: Consider a potential function pc : W → R.
Assume that the robots move from a caging configuration c0
to another configuration cT , and let c(t) denote their trajectory



Fig. 4. This figure illustrates a typical motion of the robots during herding
phase. The robots moves from (x1, x2, x3, x4, x5) to (x′1, x

′
2, x

′
3, x

′
4, x

′
5).

Yellow circles depict the initial superlevel set, while the final one is depicted
in green.

in Cfree, t ∈ [0, T ]. Let st denote the trajectory of a sheep in
W , and assume that when t = 0 the sheep is caged by robots
{r1, .., rk} ⊆ R. Finally, let g0 be a caging chain formed by
{r1, .., rk}, s0 ∈ int g0, and let gt denote its deformation at
time t, induced by the corresponding movement of the robots.

Then the sheep never escapes the cage for any t ∈ [0, T ],
provided that

1) both the sheep and the robots team move with constant
non-zero velocities, vs and vr;

2) dc(0)(s0)− ω(g0) > (vs + 2 · vr) · T
Proof: We need to demonstrate that for any moment of

time t ∈ [0, T ]

• the potential of the sheep is lower than the potential of
the caging chain, pc(t)(st) < pc(t)(gt), and

• the sheep is inside the caging chain, st ∈ int gt.
Note that the latter statement follows from the former,

provided s0 ∈ int g0. Therefore, it is enough to show that
for any t ∈ [0, T ]

pc(t)(st) < pc(t)(gt). (1)

From the first condition of the Proposition, for any t ∈ [0, T ]
we have

dc(t)(st) ≥ dc(0)(s0)− t · vs − t · vr.

Therefore, since p strictly monotonically decreases with the
distance to the robots, we have

pc(t)(st) ≤ pd(dc(0)(s0)− t · vs − t · vr).

Similarly, for t ∈ [0, T ] we have

pc(t)(gt) ≥ pd(ω(g0) + t · vr)

To prove 1, it is enough to show that

pd(ω(g0) + t · vr) > pd(dc(0)(s0)− t · vs − t · vr), (2)

which by strict monotonicity of p() follows from

dc(0)(s0)− t · vs − t · vr > ω(g0) + t · vr, (3)

which can be written as

dc(0)(s0)− ω(g0) > t · vs + 2 · t · vr.

The latter is true for any t < T , since

dc(0)(s0)− ω(g0) > (vs + 2 · vr) · T

Remark 1: Instead of expressing these conditions in terms
of time and velocity, we can as well assume that the time T is
fixed. This gives us a condition on the acceptable displacement
of the robots, and we then can adjust the velocity vr to satisfy
the necessary conditions from the above proposition. Let εr =
vr · T and εs = vs · T . In our implementation, we make sure
that dc(0)(s0)−ω(g0) > εs+2 ·εr. Assuming that the velocity
of robots is higher than the velocity of sheep, it is enough to
check that dc(0)(s0)− ω(g0) > 3 · εr.

C. Motion planning

Consider now the steering problem. Assume that we have
an initial caging configuration cinit. We need to move the
flock to the specified goal region without breaking the cage.
This means that each configuration in the path must form a
cage, and all the subsequent pairs of cages must be safely
connected. Let U be a set of all possible actions which we can
apply to a given configuration in order to move to the next
one. Namely, each u ∈ U specifies a collection {v1, .., vn} of
vectors defining a movement of the system. When u is applied,
the ith robot moves from xi to xi + vi. For simplicity, we
discretize U by assuming that each robot can be moved along
some vector ek∆φ at a distance ||m∆d||, where ∆φ and ∆d
are the discretization steps. By Ccage ⊂ Cfree we denote the
subspace containing all caging configurations.

1) Standard RRT – a naive approach: We start with a
simple approach to motion planning – standard RRT with
rejection sampling. We sample random configurations from
C, and check whether they are (i) collision-free, and (ii) form
valid cages of the required size. If both conditions hold, we
then would search for the nearest vertex in the RRT, and make
a motion from it towards the randomly selected configuration,
so that the nearest and the new vertices would be (i) reachable
from each other by a straight collision-free motion, and (ii)
safely connected. However, this approach does not perform
well in practice, as the probability of randomly sampling a
caging configuration in R2n is small. Therefore, instead of
sampling random configurations from C, we aim to sample
new configurations biased towards the caging subset of the
configuration space, Ccage, see Alg.2.

2) RRT-based caging planner: Namely, we generate sam-
ples based on those caging configurations which we already
have. We randomly choose an existing configuration c from
the RRT, and with probability 0.5 we apply one of the
following operations to generate new configuration crand:
Random translation: in this case, crand has the same shape
as c (i.e., relative positions of the robots are preserved), but
is moved from c in a random direction to random distance.
Random perturbation: in this case, we randomly choose a
direction φi ∈ (0, 2π) for each robot, i ∈ {1, .., n}, and move
the ith robot in the chosen direction at a distance ε(c), where
ε(c) depends on the location of the closest sheep and the width



of the caging chain, and is defined in such a way that crand
is also a caging configuration.

Algorithm 2: RRT-based caging planner
input : configuration space C, robots initial configuration cinit, sheep

coordinates f , workspace W
output: RRT T
T ← ∅
if CageVerification (cinit, f ) then
T ← {cinit, f}
tstart ← CurrentTime()
while time < MaxTime do

c, f ← RandomFromTree(T )
δ ← Rand(0, 1)
if δ < 0.5 then

crand ← RandomTranslation(c)
else

crand ← RandomPerturbation(c)
end
if Extend(T , crand, W) = Reached then

break
end
time← CurrentTime() - tstart

end
end
return T

Once we have a new random configuration crand, we are
trying to extend the RRT, see Alg. 3. For that, we find the
nearest existing configuration cnear in the tree, and then with
probability 1 − ρ we apply the action from U that leads us
as close as possible to crand. Alternatively, with probability
ρ > 0 we apply to cnear a random action instead of the optimal
one. This is done for the sake of preserving probabilistic
completeness in our modification of RRT. However, in practice
our algorithm is more efficient when ρ is close to 0.

Algorithm 3: Extend
input : RRT T , configuration crand, workspace W
output: Reached or Extended or Failed

cnear, f ← NearestNeighbor(T , crand)
δ ← Rand(0, 1)
if δ < ρ then

cnew, f ′ ← ApplyRandomAction(T , cnear , f , crand)
else

cnew, f ′ ← ApplyTheBestAction(T , cnear , f , crand)
end
if AddVertex(T , cnew , f ′, cnear , f , W) then

if cnew ∈ Cgoal then
return Reached

else
return Extended

end
else

return Failed
end

3) Motion verification during the herding phase: As a result
of applying an action to cnear, we get a new configuration
cnew which we would like to add to the tree. At this point we
need to make sure that cnear and cnew are safely connected,
and there is a straight-line collision-free path between them,
see Alg. 4. If there is no straight-line collision-free path, we
compute the closest reachable configuration on the way to
cnew instead. If it is a caging configuration and lies at a
sufficient distance from cnear, and cnear and cnew are safely
connected (by Prop. 2), we add it to the tree.

Algorithm 4: AddVertex
input : RRT T , configuration to be added cnew , sheep coordinates

corresponding to the new configuration f ′, nearest
configuration in the tree cnear , sheep coordinates within
nearest configuration f , workspace W

output: True or False

M ← GetLinearMotion(cnear , f , cnew , f ′, W)
cnew , f ′ ← LastBeforeCollision(cnear , f , M, W)
return CageVerification(cnew , f ′) and (Distance(cnear , cnew) > ε)
and AreSafelyConnected(cnear , cnew , f )

The correctness of our approach is enforced by two
verification procedures: CageVerification(cnew, f ′) and
AreSafelyConnected(cnear, cnew, f ). The former corresponds
to the caging verification during the repulsion phase and is
described in details in Alg. 1. The latter checks the safety
during the herding phase, see Alg. 5. Here, the function
GetMaxRobotMovement(c0, c1) computes εr from Remark 1
– the length of the paths between the initial and the resulting
positions of the robots. DistanceToConf(s0, c0) returns
dc0(s0), and ConfChainWidth(c0) returns ω(g0).

Algorithm 5: AreSafelyConnected
input : Two configurations c0 and c1, sheep coordinates s0

corresponding to the first configuration
output: True or False

∆← GetMaxRobotMovement(c0, c1)
return DistanceToConf(s0, c0)−ConfChainWidth(c0) > 3∆

4) Probabilistic completeness: Let us now discuss prob-
abilistic completeness of the proposed algorithm. Assume
that there is a sequence of configurations c1, .., cq , such that
c1 = cinit, and cq ∈ Cgoal. Assume also that there exists a
sequence of actions u1, .., uq−1 that when applied to c1 yields
the sequence c2, .., cq . Here all of the configurations are in
the same connected component of Ccage, and each pair of
subsequent configurations are safely connected.

Then we can formulate the following proposition (the proof
is almost identical to the proof of Theorem 3 from the work
by LaValle and Kuffner, [12], and we briefly recall it here).

Proposition 3: The probability that the above proposed
algorithm initialized with cinit will contain a configuration
from Cgoal tends to one as the number of iterations goes to
infinity.

Proof: Assume the RRT contains ci as a vertex after
some finite number of iterations. Consider the Voronoi diagram
associated with the RRT vertices. Since in our implementation
no two RRT vertices lie within a specified ε > 0 of each other,
µ(Vor(ci)) > 0. At each iteration of the algorithm, there is a
non-zero probability p1 that ci will be selected as the nearest
vertex. Since U is finite, and we select a random action from U
with positive probability ρ, there is a non-zero probability p2

that the right action ui leading us to the new configuration ci+1

will eventually be selected. We apply this argument iteratively
from c1 to cq−1.

D. Generalization: 3D workspace

Our algorithm can be naturally generalized to higher di-
mensions. Let now W ⊂ R3. As before, a potential function



Fig. 5. The obstacles are depicted in grey; the goal region is the blue square;
the black dots correspond to the initial configuration of the robots, the green
dots depict the current configuration, and the red dots are the robots in the
final configuration. The potential field induced by the current configuration is
depicted in red. In the second environment, the 3 remaining goals are depicted
in green.

p : W → R has to be continuous and strictly monotonically
decreasing as the distance from the point to the set of robots
increases, and the same assumption regarding the motion of
the flock is made. A high potential fence can be considered
as a high potential subset HPS of W , such that at least one
connected component ofW−HPS is bounded. Proposition 1
can be directly generalized, as the dimensionality of the space
does not play a crucial role in the proof. Moreover, the same
motion planning algorithm can be applied with only slight
technical modifications.

V. EXPERIMENTS

In this section, we consider two types of workspaces and
run our algorithm different number of robots. We run our
experiments on an Intel i7 CPU laptop with 12 GB of RAM.

A. Narrow passages

In our first experiment, we consider a family of simple
rectangular workspaces containing two polygonal obstacles
and a narrow passage between them (Fig. 5, left side). Our
goal is to see how the efficiency of our algorithm depends
on d(R)/w(C), where w(C) denotes the width of the narrow
passage, and d(R) is the maximal distance between any two
robots in the initial configuration. In other words, we would
like to see how well the robots can change the shape of their
formation without breaking the cage, when they have to go
through narrow passages. We perform experiments with 4, 5,
6, and 7 robots respectively. We consider 20 random initial
configurations and run the algorithm 50 times for each of
them. We interrupt it after 30 seconds in case the solution
has not been found. We compute the average execution time in
seconds, as well as the success rate (the percentage of success-
ful runs). Since this workspace is very simple, and the main
difficulty is to find the path through the narrow passage, we
consider only one goal region, and all the initial configurations
are located on the opposite side of the workspace.

The above table presents the average computation time of
the successful runs, as well as the success rate. We see that
for d(R)/w(C) between 0.8 and 1.0 our algorithm performs
quite well. However, we can observe that as we decrease the

d(R)

w(C) 4 robots 5 robots 6 robots 7 robots

1.0 1.7 s, 96% 2.0 s, 91% 3.1 s, 89% 4.3 s, 79%
0.9 2.8 s, 89% 2.9 s, 87% 1.5 s, 77% 4.3 s, 76%
0.8 2.9 s, 79% 3.3 s, 86% 1.8 s, 57% 2.7 s, 71%
0.7 3.7 s, 73% 3.5 s, 62% 3.3 s, 44% 9.9 s, 44%
0.6 7.1 s, 45% 2.9 s, 26% 3.5 s, 20% 8.6 s, 26%

width of the passage, the success rate significantly decreases.
This likely is the case because our algorithm cannot explore
the caging space well enough within 30 seconds, as the shapes
of the new configurations are biased towards those which are
already in the tree.

B. Random polygons
In the second experiment, we consider a more complex

environment (Fig. 5, right side). As before, we analyze how
well our algorithms perform depending on the number of
robots: 4, 5, 6, and 7. We consider 4 different goal regions
and 20 random initial configurations. We run the algorithm
50 times for each combination of the start and the goal. We
interrupt it after 30 seconds in case the solution has not been
found.
Goal 4 robots 5 robots 6 robots 7 robots

1 6.9 s, 87% 7.5 s, 91% 7.3 s, 80% 6.5 s, 86%
2 7.0 s, 87% 5.2 s, 90% 10.5 s, 69% 9.9 s, 96%
3 17.1 s, 16% 5.2 s, 1% 6.3 s, 2% 5.9 s, 2%
4 2.9 s, 96% 5.3 s, 90% 7.4 s, 89% 4.7 s, 91%

The above table presents the average computation time of
the successful runs, as well as the success rate. This experi-
ments shows the performance of our algorithm in a cluttered
environment. Here, we can see that the Goal 3 is practically
unreachable within 30 seconds. This happens because it is
densely surrounded with obstacles, and therefore the shape of
the configurations in the path should be significantly different
from the shape of the initial one.

VI. CONCLUSION

In this paper, we proposed an approach towards herding by
caging: given a set of mobile robots in the two-dimensional
workspace, we partially control the set of moving objects
(called sheep) by means of the potential field induced by
repulsive forces exerted by the robots.

We address the caging verification problem using a classical
tool from algebraic topology – homology groups. We propose
an RRT-based algorithm for path planning and show that
it preserves an important advantage of RRT – probabilistic
completeness. We implement our algorithm and analyze its
performance in experiments.

In the future work we would like to run the experiments
in the three-dimensional settings. We also plan to run some
real world experiments with mobile robots moving in both
two-dimensional and three-dimensional settings.

VII. ACKNOWLEDGMENT

This work has been supported by the Knut and Alice
Wallenberg Foundation and Swedish Research Council. The
authors thank O. Kravchenko for his help with the implemen-
tation, and J. A. Haustein and J. F. Carvalho for their valuable
feedback.



REFERENCES

[1] T. Balch and R. C. Arkin. Behavior-based formation
control for multirobot teams. IEEE Transactions on
Robotics and Automation, 14(6):926–939, 1998.

[2] R. W. Beard, J. Lawton, and F. Y. Hadaegh. A coordina-
tion architecture for spacecraft formation control. IEEE
Transactions on Control Systems Technology, 9(6):777–
790, 2001.

[3] S. Bhattacharya, S. Kim, H. Heidarsson, G. S. Sukhatme,
and V. Kumar. A topological approach to using cables to
separate and manipulate sets of objects. The International
Journal of Robotics Research, 34(6):799–815, 2015.

[4] Z. Butler, P. Corke, R. Peterson, and D. Rus. Virtual
fences for controlling cows. In International Conference
on Robotics and Automation, volume 5, pages 4429–
4436. IEEE, 2004.

[5] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage
control for mobile sensing networks. IEEE Transactions
on Robotics and Automation, 20(2):243–255, 2004.

[6] H. Edelsbrunner and J. Harer. Computational topology:
an introduction. American Mathematical Soc., 2010.

[7] M. Egerstedt and X. Hu. Formation constrained multi-
agent control. IEEE Transactions on Robotics and
Automation, 17(6):947–951, 2001.

[8] J. Fink, M. A. Hsieh, and V. Kumar. Multi-robot
manipulation via caging in environments with obstacles.
In International Conference on Robotics and Automation,
pages 1471–1476. IEEE, 2008.

[9] A. Garrell, A. Sanfeliu, and F. Moreno-Noguer. Discrete
time motion model for guiding people in urban areas
using multiple robots. In International Conference on
Intelligent Robots and Systems, pages 486–491. IEEE,
2009.

[10] S. Garrido, L. Moreno, and P. U. Lima. Robot formation
motion planning using fast marching. Robotics and
Autonomous Systems, 59(9):675–683, 2011.

[11] V. Gazi and K. M. Passino. A class of attrac-
tions/repulsion functions for stable swarm aggregations.
International Journal of Control, 77(18):1567–1579,
2004.

[12] S. M. LaValle and J. J. Kuffner. Randomized kinody-
namic planning. The International Journal of Robotics
Research, 20(5):378–400, 2001.

[13] J. M. Lien, S. Rodriguez, J.-P. Malric, and N. M. Amato.
Shepherding behaviors with multiple shepherds. In
International Conference on Robotics and Automation,
pages 3402–3407, 2005.

[14] J. Mahler, F. T. Pokorny, S. Niyaz, and K. Goldberg.
Synthesis of energy-bounded planar caging grasps using
persistent homology. Workshop on the Algorithmic Foun-
dations of Robotics, 2016.

[15] Z. McCarthy, T. Bretl, and S. Hutchinson. Proving
path non-existence using sampling and alpha shapes. In
International Conference on Robotics and Automation,
pages 2563–2569. IEEE, 2012.

[16] G. A. S. Pereira, A. K. Das, R. V. Kumar, and M. F. M.
Campos. Decentralized motion planning for multiple
robots subject to sensing and communication constraints.
Departmental Papers (MEAM). University of Pennsylva-
nia, 2003.

[17] A. Rodriguez, M. T. Mason, and S. Ferry. From caging
to grasping. The International Journal of Robotics
Research, 31(7):886–900, 2012.

[18] A. Schultz, J. J. Grefenstette, and W. Adams. Robo-
shepherd: Learning complex robotic behaviors. In In
Robotics and Manufacturing: Recent Trends in Research
and Applications, Volume 6, pages 763–768. ASME
Press, 1996.

[19] M. Schwager, D. Rus, and J.-J. Slotine. Unifying
geometric, probabilistic, and potential field approaches
to multi-robot deployment. The International Journal of
Robotics Research, 30(3):371–383, 2011.

[20] D. Strömbom, R. P. Mann, A. M. Wilson, S. Hailes,
A. J. Morton, D. Sumpter, and A. J. King. Solving the
shepherding problem: heuristics for herding autonomous,
interacting agents. Journal of The Royal Society Inter-
face, 11(100):20140719, 2014.

[21] H. G. Tanner. Iss properties of nonholonomic vehicles.
Systems & Control Letters, 53(3-4):229–235, 2004.

[22] H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Flocking
in fixed and switching networks. IEEE Transactions on
Automatic control, 52(5):863–868, 2007.

[23] R. Vaughan, N. Sumpter, J. Henderson, A. Frost, and
S. Cameron. Experiments in automatic flock control.
Robotics and Autonomous Systems, 31(1-2):109–117,
2000.


	Introduction and Related Work
	Problem Formulation
	Potential-based Caging
	The Motion Model
	Repulsion Phase
	Herding Phase


	Mathematical Background
	Holes, Voids and Homology Groups
	Simplicial Complexes
	Topology of a Union of Balls: Alpha Complexes

	Methodology
	Cage verification
	Safely Connected Cages
	Motion planning
	Standard RRT – a naive approach
	RRT-based caging planner
	Motion verification during the herding phase
	Probabilistic completeness

	Generalization: 3D workspace

	Experiments
	Narrow passages
	Random polygons

	Conclusion
	Acknowledgment

