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Abstract

Nonprehensile rearrangement is the problem of controlling a robot to interact with objects through pushing actions
in order to reconfigure the objects into a predefined goal pose. In this work, we rearrange one object at a time in an
environment with obstacles using an end-to-end policy that maps raw pixels as visual input to control actions without
any form of engineered feature extraction. To reduce the amount of training data that needs to be collected using a real
robot, we propose a simulation-to-reality transfer approach. In the first step, we model the nonprehensile rearrangement
task in simulation and use deep reinforcement learning to learn a suitable rearrangement policy, which requires in the
order of hundreds of thousands of example actions for training. Thereafter, we collect a small dataset of only 70 episodes
of real-world actions as supervised examples for adapting the learned rearrangement policy to real-world input data.
In this process, we make use of newly proposed strategies for improving the reinforcement learning process, such as
heuristic exploration and the curation of a balanced set of experiences. We evaluate our method in both simulation
and real setting using a Baxter robot to show that the proposed approach can effectively improve the training process
in simulation, as well as efficiently adapt the learned policy to the real world application, even when the camera pose
is different from simulation. Additionally, we show that the learned system not only can provide adaptive behavior to
handle unforeseen events during executions, such as distraction objects, sudden changes in positions of the objects, and
obstacles, but also can deal with obstacle shapes that were not present in the training process.
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1. INTRODUCTION

The skill of object rearrangement under the presence of
obstacles is essential for object manipulation in cluttered
and unstructured environments [1, 2, 3, 4]. However, the
classical pick-and-place approaches to object rearrange-
ment fundamentally rely on three further and nontrivial
skills: grasping objects [5, 6, 7, 8], motion planning [9, 10],
and placing objects [11]. For successful rearrangement,
the object has to be secured in the robot’s manipulator
considering mechanical grasp stability, then it has to be
moved around the obstacles considering the forces acting
on the object, and finally, it has to be released at the tar-
get location making sure that it remains standing upright.
This not only requires that the object, for its weight and
size, is graspable but also depends on small uncertainties
about the object’s shape and pose for synthesizing grasps
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and motions, which renders the pick-and-place approach
to object rearrangement into a challenging problem.

In many applications, it is however more prudent to
assume that perception is uncertain and incomplete, and
that reliable grasping for transport is virtually unattain-
able. In such a scenario, it is more meaningful to instead
leverage nonprehensile actions in the form of pushing and
sweeping actions [1, 3, 12, 13, 14, 15]. Such multi-contact
interactions are often observed in human manipulation be-
havior because they are more robust and reliable under
uncertainty [16, 12, 17]. Subduing the difficult problems
of grasp and motion synthesis in this way, however, raises
the problem of creating complex robot-object interactions
which are difficult to model and plan. For this reason
nonprehensile rearrangement is usually addressed under
simplifying assumptions such as complete observability or
known object geometry [18, 15].

Although classical planning-based approaches can ad-
dress this problem via careful modeling of interactions,
estimating physical properties, and reconstructing states
from perception data, we propose to consider nonprehen-
sile rearrangement as a model-free, end-to-end learning
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Figure 1: The real robot is tasked to first find and then push an object (blue) around obstacles (red) to a goal region (green) relying
on only visual feedback. Our approach achieves this in three steps: (1) We first train the robot in simulation with reinforcement
learning (green arrows). (2) Then, we collect a data set of corresponding images by commanding the real robot using a re-created
scene in simulation (blue arrows). (3) In the last step, we use the corresponding images in supervised learning to transfer the
policy from simulation to reality (orange arrows).

problem. Using reinforcement learning, we can leverage
the robot’s own experience. Similarly to other learning-
based manipulation systems [19], this approach removes
extensive engineering of perception and reasoning compo-
nents and allows adapting the system to changing condi-
tions by learning without re-modeling of components.

Deep reinforcement learning policies have recently shown
a high level of performance on end-to-end visual control
problems, however, this required in the order of hundreds
of thousands of data points to succeed [20]. The collection
of such an amount of training data in real-world settings
usually depends on simple automatic reset of the task, ad-
ditional instrumentation for feedback signals, and a highly
parallelized training setup [21, 22]. For this reason end-
to-end reinforcement learning is often only demonstrated
in virtual tasks such as computer games and simulated
systems [20, 23, 24, 25].

In our task of nonprehensile rearrangement, automated
training data collection would have to place obstacles at
random positions and transport the manipulation object
back to the starting location for every reset. This would
require to automate a problem of the type we want to solve
in the first place, which is the reason why we deem fully au-
tomated data collection impractical for our purpose. Since
we are still interested in a robot performing nonprehensile
rearrangement in reality, we instead draw on the concept
of transfer learning [26, 27]. Concretely, we train the re-
arranging policy in simulation where training experience

can be obtained at low cost and then transfer the learned
policy to real-world input data.

To this end, we model the nonprehensile rearrange-
ment task in a general purpose robot simulator [28] with
close resemblance to reality in terms of visual data and
physical behavior of robot and objects. After training the
rearrangement policy in simulation, we collect a compara-
tively small amount of real-world data in a calibrated robot
setup. In this process, we use additional sensors and com-
puter vision techniques to extract all relevant information
such as object and obstacle positions from real-world data
and recreate the perceived situation in simulation. This
provides a set of real-world perception data for which we
can, with a detour via their simulated recreation, provide
the corresponding actions from the previously learned pol-
icy as supervision labels. Finally, we use pairs of percep-
tion and action labels in supervised learning to adapt the
previously learned policy to real-world input data. The
different steps of this approach are shown in Figure 1. In
our experiments, we explore different ways of adapting and
modifying the policy model in the last step.

When learning the end-to-end rearrangement policy in
simulation, we employ a reinforcement learning method
that is based on fitting the state-action value function with
a deep neural network [20]. This is known to be unstable
and prone to diverge because of, among others, tempo-
ral correlation in training data and the stability-plasticity
dilemma. A common remedy is randomizing over the data

2



[20, 29, 30, 31] combined with periodically updating tar-
get values [20]. In our task, however, learning is confronted
with another hampering bias in the training data distri-
bution: Random exploration again and again leads to col-
lision with obstacles and predominantly provides experi-
ences of failure in terms of the task. In our experience,
this constitutes an impediment for learning which leads to
the robot never obtaining a policy that solves the task.

To address this issue, we proposed two methods to
achieve a balanced training data set in our previous work
[32]. First, we define a task-specific behavior policy for the
off-policy reinforcement learning algorithm. This policy
uses an environment-based potential field [33, 34] to in-
crease the probability of high-reward actions by reducing
the number of collisions but does not preclude collisions
completely. Second, we introduce active curation of the
training data set which adjusts the data insertion proba-
bilities according to the current ratio of success and failure
experiences in the data set. This makes sure that random-
ized access to the training data set retrieves success and
failure experience most equally and results in informative
gradients for learning the state-action value function.

For evaluation, we consider a table top rearrangement
task where object and obstacles are colored cubes and the
target location is indicated by a colored marker as seen
in Figure 1. Even though the robot is trained with only
two randomly placed obstacles, the learned policy can deal
with up to four obstacles at the same time. When the
camera angle is similar, the transferred policy shows sim-
ilar performance as in simulation. When the camera pose
is altered in reality, the transferred policy can still execute
the task with a small decrease in performance. Differ-
ent from classical open-loop planning, our approach pro-
duces a closed-loop policy that can react to unpredictable
changes such as moving and appearing obstacles or vari-
able friction without the need of computationally expen-
sive re-planning.

In this paper, we integrate our past work on learning
the nonprehensile rearrangement task in simulation [32]
(described in Section 4 and Section 6) as well as our addi-
tional efforts with regard to transferring the learned pol-
icy to reality (Section 5, Section 7). Our contributions are
thus

1. modeling the nonprehensile rearrangement task as a
reinforcement learning problem,

2. enabling learning the task in simulation with
(a) heuristic action sampling for exploration and
(b) active training data set curation,

3. transferring the learned policy to a real robot with
supervised examples, and

4. evaluation of different ways to transfer the learned
policy by adapting and modifying the policy model.

After presenting related literature in Section 2, we formu-
late the problem and state our assumptions in Section 3.
In Section 4 we describe how we learn the policy in simula-
tion and explain in Section 5 how we transfer the policy to

reality. Section 6 and 7 contain experimental evaluation in
simulation and reality, respectively. Our concluding com-
ment are found in Section 8.

2. RELATED WORK

In this section, we first review the literature about non-
prehensile manipulation for rearrangement using classical
methods and analyze their limitations. Then, we survey
learning-based solutions for robotic manipulation without
transfer between simulation and reality. Finally, we dis-
cuss works with real-world robots that use domain transfer
learning and compare them to our transfer approach.

Most works based on nonprehensile manipulation for
rearrangement problems employ classic methods. For in-
stance, Haustein et al. [15, 35, 36] used sampling-based
planning. In their work, they use a free-floating end-
effector to avoid expensive planning in configuration space
and rely on a black-box physics model for planning with
kinodynamic-RRT [35]. The algorithm searches for dy-
namic transitions between statically stable states and can
exploit interaction with the environment. Similar to our
approach, they assume quasi-static dynamics for planar
pushing and project the actions to a constraint manifold
parallel to the support surface [15]. Different to our ap-
proach, the actions space is separated in so-called object-
centric and robot-centric actions [36].

Different from the closed-loop planning approaches, King
et al. [37] proposed a Monte Carlo Tree Search-based
method to create open-loop trajectories. Their algorithm
uses learning from demonstration and plans in a simpli-
fied subspace in order to produce more useful trajectories
as compared to random sampling which accelerates the
search process.

However, nearly all these methods [15, 35, 36] assume
complete observability of the state from visual perception
for planning, which is impractical or even impossible in
most of applications. In addition, to deal with the com-
plex dynamics of interacting with physical bodies, physical
properties are often assumed to be known to keep planning
of action sequences tractable. Similar to our work, dynam-
ics are often simplified by assuming a quasi-static model
[38, 39] to reduce complexity, which conveniently allows
solutions based on motion primitives [40, 18]. Moreover,
these planning-based methods are time-consuming, such
that they are practically only used for static environment
and are unable to do real-time re-planning when the scene
is changed from external influences.

To address the stated issues, some researchers applied
learning methods to robotic manipulation [19, 41, 42, 43,
32, 44, 45, 46, 47]. For instance, [19, 41, 42] used super-
vised and unsupervised learning methods to learn grasping
from a large number of data, while [43] learned tasks from
demonstrations. However, their tasks were relatively sim-
ple and the environment was static. For pushing tasks,
[46, 47] used visual model predictive control but did not
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automatically identify and consider the obstacles. If train-
ing is directly done on a real robot, examples are difficult
and expensive to collect. This was addressed by training
with multiple robots in parallel [22] and demonstrations of
the task [48]. The first option requires that the task is easy
to reset and the second option can introduce human bias.
When learning is done in simulation to have easier access
to more data, the resulting system is not applied to reality
[32], or the system has to forgo access to raw sensor data
to avoid the gap between simulation and reality [44, 45].

A better solution to this problem is training in simula-
tion and then transferring to reality. There are two domi-
nant ways to do domain transfer from simulation to reality:
One is reducing the discrepancy between simulation and
reality, and the other is learning to extract features that
are invariant for different domain such that they work in
both domains. For the latter concept, some works tried
to introduce variance into the simulation environment by
employing randomization [49, 27, 50]. This increases the
robustness of the learned policy, which then allows the
robot to still perform in reality. We evaluate such approach
as a baseline in our experiments. Other works translated
simulated perception data to realistic sensor data using
Generative Adversarial Networks (GANs) [51, 52, 53], to
make the gap between training data in simulation and real-
world measurements small. For the latter approach, some
works introduced confusion loss to confuse the network
when training [54], while others transmitted the hidden
activations of one network to another [55]. The work of
[56] is most similar to ours: Their approach uses weak pair-
wise matching to learn a domain-invariant representation
from vision to action space.

Most domain transfer works require that the position
and viewing angle of the camera in reality is the same as in
simulation. This assumes that the discrepancy is mainly
manifested in color features rather than in position or scale
of the observed scene. Thus, the transfer can be done in a
pixel-to-pixel manner [51, 52, 53, 54, 55, 56]. Our method,
however, can work with a distinct camera position, with
few aligned data points, and requires only a short training
time. Different from [54, 55, 56], our simulation-to-reality
transfer operates on state-action values while their ap-
proaches transfer in action space. Overall, our work treats
perception and planning together without the knowledge
of the explicit physical model and dynamics. We leverage
on convolution neural network to recognize the scene and
understand the task. In our case, deciding on actions is
a very fast end-to-end process, which allows adaptive be-
havior when the environment is changing unexpectedly. To
make our system operate in reality, we train the network
in simulation, which is tractable and efficient, and then
do the transfer from simulation domain to reality. To our
knowledge, this is the first time of addressing a real-world
nonprehensile rearrangement problem with obstacles uti-
lizing deep reinforcement learning.

3. PROBLEM STATEMENT

In this section, we describe our version of the non-
prehensile rearrangement problem, state relevant assump-
tions, and introduce notation and terminology for the re-
minder of the paper. At the end of this section, we for-
malize the policy learning objective in simulation and the
transfer learning objective.

3.1. Task and Assumptions

Since we are mainly interested in studying the learning
and transfer of a nonprehensile rearrangement policy, we
restrict ourselves to a particular instance of the task such
that variations in size, shape, weight and other properties
of the object, obstacles, and robot do not introduce addi-
tional difficulties. Therefore, we consider the situation de-
picted in Figure 1 where a robot with a nonprehensile ma-
nipulation tool is tasked with moving a cube-shaped ma-
nipulation object on a table top past a set of cube-shaped
obstacles to a squared visual indicator for the target loca-
tion. Initially, the target location and the manipulation
object are situated in the half-space in front of the tool.

In this setting, we assume that the robot can move
the manipulation tool parallel to the table top to any lo-
cation on the surface but keeps the tool always oriented
along the table’s Y -axis. This removes the need for con-
sidering kinematic constraints. We also assume that the
robot is capable of pushing the manipulation object effort-
less across the table and that friction is large enough to
render the interaction quasi-static. This removes the need
for considering momentum in robot or object motion and
allows us to consider rearrangement in discrete time steps.
To make the task solvable, we further require that during
tests there exists at least one path to the target position
that is not fully blocked by obstacles.

Despite the simplifying assumptions stated above, the
task is still challenging: First, the physical properties of
the environment are unknown, which makes it hard to pre-
dict future states. Additionally, the robot’s execution of
actions in the real world is unreliable and perception of
exact poses of objects and obstacles might be occluded.
Given that the robot can only perceive the scene from
camera images as seen in Figure 1, it is clear that a triv-
ial hard-coded approach, for example a rule-based system,
would be hard to design. We also demonstrate in Section
6 that a trivial approach such as moving the gripper with
the object on a straight line to the target location is not
successful because it leads to collision in over 90% of all
cases.

3.2. Definitions and Notations

Solving the task is structured as a sequential decision-
making problem, where in each time step t, the robot per-
ceives one observation and has to decide on an action until
the task terminates with success or failure.
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Figure 2: This figure illustrates the 5 predefined motion direc-
tions for the manipulation tool. Action 3 is aligned with the
front direction Y of the manipulation tool. The sectors depict
the ranges in which the potential integrals for heuristic action
sampling are calculated, as explained in Sec. 4.3.

Observations. An observation x ∈ X is a 128 ×
128 RGB image (49152 dimensions) taken from a cam-
era pointing at the table top. Examples of observation in
simulation and reality are seen in Figure 1. In the images,
the manipulation object is seen in blue, the obstacles in
red, the target location in green. The robot arm with the
attached manipulation tool can occlude parts of the scene.
In notation, we differentiate between simulated observa-
tions xsim and xreal, if necessary.

Actions. An action a ∈ A translates the manipulation
tool parallel to the table top by a constant offset da ∈ R+.
There are five predefined motion directions as depicted
in Figure 2 which allow a large set of trajectories but no
backward movement.

Episodes. An episode E consists of a sequence of ob-
servations and actions that is terminated by either success
or failure. We index the set of episodes by k and use
time steps t = 1, 2, . . . , T ≤ Tmax within episodes where T
might be different from episode to episode. Episodes are
artificially terminated after Tmax steps.

Success and Failure. An episode only terminates
with success if the manipulation object reaches the target
location. In any other case termination is caused by fail-
ure. The latter can be caused by timeout (i.e. Tmax steps
are reached), collision with an obstacle, or bound violation
(i.e. moving the tool outside of the work-surface). Bound
violation as a failure mode implies that the robot has to
learn to keep the tool in a kinematically feasible space.

Grounding Labels. During the learning process in
simulation, the algorithm has access to the following 2D
positions relative to the table top’s frame: Manipulation
object position pman, tool position ptool, target location
ptarget, and for each obstacle i the position pobs,i. The
positions are all measured in centimeters. Based on these
we derive predicates for success and failure.

3.3. Policy Learning Objective

Since our action space is finite, we pose learning the
rearrangement policy as a model-free Q-learning problem
[57]. The goal of Q-learning is to recover the optimal state-
action value function, called Q-function. The optimal Q-
function is defined as the discounted cumulative sum of

future rewards after making observation x and taking ac-
tion a,

Q∗(x, a) = max
π

E

∑
i≥0

γirt+i | xt = x, at = a,

 , (1)

where the symbol π stands for a policy π:X → A. For
this formulation, we have to provide a feedback signal rt
that models the nonprehensile rearrangement task.

In Section 4.1 we define the feedback signal rt in terms
of grounding labels and in Section 4.2, we explain how
we use the Deep Q-learning algorithm [20] to learn the
optimal Q-function in simulation, Qsim.

3.4. Transfer Learning Objective

The optimal Q-function implicitly represents the opti-
mal policy as a greedy action choice [58],

a∗ = arg max
a∈A

Qsim(xsim, a). (2)

As a consequence, we can transfer the optimal policy by di-
rectly transferring Qsim from simulation to Qreal in reality.
Given pairs (xsim,xreal) of observations of the same situa-
tion in simulation and reality, this is a supervised learning
problem.

In Section 5, we explain how we collect the pairs of
corresponding images (xsim,xreal) and how we optimize
Qreal to map to the same value as Qsim. Thereafter, we
also discuss different initializations and models of Qreal

based on Qsim.

4. POLICY LEARNING

In this section, we explain how we learn the nonpre-
hensile rearrangement policy in simulation with the Deep
Q-learning algorithm [20]. First, we model nonprehen-
sile rearrangement as a reinforcement learning problem by
defining a task-dependent feedback signal and explain our
model for the Q-function Qsim. After that, we describe
our behavior policy that samples high-reward exploration
actions and explain how we obtain informative gradients
by curating a balanced training data set. The complete
algorithm is shown in Listing 1 below.

4.1. Feedback Signal

In the formalism of reinforcement learning, the transi-
tion feedback signal (also called reward) implicitly specifies
the task. In our nonprehensile rearrangement problem, we
want to use the manipulation tool to move the manipu-
lation object to the target location without colliding with
obstacles or leaving the work-surface with the tool within
a limited mount of time, as described in Section 3.1. This
task can be modeled by a feedback signal rtaskt that is pos-
itive when the target location is reached and negative in
cases where there is a collision, where the tool leaves the
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Algorithm 1 Deep Q-Learning

1: Randomly initialize primary and target networks with
θp = θt

2: Initialize experience buffer D
3: for episode k = 1, 2 . . . ,K do
4: for time step t = 1, 2, . . . until termination do
5: if with probability Pexploit then
6: at ← arg maxa∈AQsim(xsim, a;θt)
7: else
8: Sample action at ∼ PA(a | ptool) . Sec. 4.3
9: end if

10: Execute at
11: Get experience et = (xsim

t , at, rt,x
sim
t+1)

12: end for
13: Curate D with episode E . Sec. 4.4
14: Sample experiences e ∼ Uniform(D)
15: Update θp and θt according to policy . Sec. 4.2.2
16: end for

work-surface, or where the maximum number of steps is
reached.

We define this feedback signal using four different case-
based signals rgoalt , rcollt , rboundt , and rtime

t that only take
two different values. For signals rcollt , rboundt , and rtime

t the
value is −1 when the condition is fulfilled while the default
value is ∞. In contrast, the signal rgoalt is set to 1 if the
condition is fulfilled and 0 otherwise. These definitions
allow us to write the feedback signal rtaskt as

rtaskt = min
{
rgoalt , rcollt , rboundt , rtime

t

}
, (3)

such that we result with reward 1 if the robot succeeds in
the task, −1 if it fails, and 0 otherwise.

In more detail: We provide positive feedback when the
object is close enough to the target location,

rgoalt = 1 ⇐⇒ ‖pman
t − ptarget

t ‖< εsuc, (4)

and give negative feedback when any obstacle i has been
moved,

rcollt = −1 ⇐⇒ ∃i: ‖pobs,i
t − pobs,i

0 ‖> εfail, (5)

the tool leaves the work-surface (bound violation),

rboundt = −1 ⇐⇒ ptool
t /∈ work-surface, (6)

or the maximum number of steps is reached (timeout)

rtime
t = −1 ⇐⇒ t = Tmax. (7)

In our nonprehensile rearrangement task the above def-
initions result in a delayed and sparse feedback signal at
the end of each episode, which makes temporal-difference
learning difficult. Especially at the beginning of the learn-
ing process, the feedback signal rtaskt will predominantly
be negative, which in our experience leads to a slow learn-
ing process. While reward shaping (i.e. the modeling of

sub-tasks in the feedback signal) can have adverse effects
[58], we found that adding a signal rtoolt that keeps the tool
close to the manipulation object and a signal that rewards
moving the object closer to the target location rtargett is
pertinent to learning the task. The overall feedback signal
rt is then defined as

rt = α1r
tool
t + α2r

target
t + α3r

task
t , (8)

with weights α1 = 0.1, α2 = 0.2 and α3 = 1.
Concretely, the sub-task feedback signal, rtoolt , increases

when tool and manipulation object get closer to each other
during the transition,

rtoolt =
1

da

(∥∥ptool
t−1 − pman

t−1
∥∥− ∥∥ptool

t − pman
t

∥∥) . (9)

The sub-task feedback signal, rtargett , increases when the
manipulation object and the target location get closer dur-
ing the transition,

rtargett =
1

da

(∥∥pman
t−1 − ptarget

t−1
∥∥− ∥∥pman

t − ptarget
t

∥∥) .
(10)

We note that in our task, the sub-task signal rtoolt is
never in conflict with the overall task since the tool has to
be close to the manipulation object to move it. Differently,
the sub-task signal rtargett can conflict with the overall task
when the tool has to move strictly sidewards (using action
1 and 5) to avoid an obstacle. However, both signals are
scaled such that their range is small compared to rtaskt

and their influence becomes minor after the initial learning
phase.

4.2. Deep Q-Learning

Our input space of RGB images is continuous and high-
dimensional. For this reason, we employ the Deep Q-
learning algorithm [20] which models the Q-function Qsim

as a deep convolutional neural network that maps to the
state-action value of each action a ∈ A in parallel. We
reflect this in notation by writing Qsim(xsim, a;θ) where θ
is the parameters of the network. Below we first explain
our model for Qsim and then detail the learning strategy.

4.2.1. Function Model

We follow a common approach in modeling Q-functions
[20] and represent Qsim with a sequence of convolution
and pooling steps followed by several fully connected lay-
ers. The convolutional and pooling steps take one ob-
servation xsim with 128 × 128 RGB pixels and map to a
low-dimensional representation which is mapped to state-
action values by the fully connected layers. The convolu-
tional part consists of six convolutional layers with Recti-
fied Linear Units (ReLU) as activation function to extract
the feature map, and four max-pooling layers to reduce
the size of the output. The model is visualized as the top
network in Figure 3.
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Figure 3: We model the function Qsim with the deep convolu-
tional neural network depicted in the top. The network com-
putes Q-values for each action in parallel. For transfer to real-
ity with pairs of corresponding images, we use three different
strategies: We learn the whole model de novo (LDN), we copy
Qsim and adapt the feature extraction layer (AFE), and we
copy Qsim, add two additional layers for flexibility (AAF).

4.2.2. Learning the Q-Function

Q-learning is based on bootstrapping with single state
transitions (x, a, r,x′). This means that the next target
value for Qsim(x, a) is defined by the transition reward r
and the so-far learned state-action value of the following
state x′. However, representing Qsim by a nonlinear func-
tion approximator, as explained in Section 4.2.1 above,
can lead to instability and divergence during bootstrap-
ping because of temporal correlation of transitions [59].
This problem is commonly addressed by experience replay
[20, 29, 30, 31] and by training separate target and pri-
mary networks. The separate networks have parameters
θt and θp respectively, and are updated by optimizing the

following loss function:

L(θp) =

E
(x,a,r,x′)

[(
r + γ max

a′∈A
Q(x′, a′;θt)−Q(x, a;θp)

)2
]
.

(11)

Experience replay stores single transitions (x, a, r,x′)
in a training data set D called replay buffer and uses them
to optimize the primary network. In practice the loss
function L(θp) is approximated by sampling transitions
(x, a, r,x′) from the replay buffer D according to some
distribution. It is therefore important that the sampled
transitions are representative and cover the whole state-
actions space. Otherwise, the estimated gradients are un-
informative and worse in the worse case previously learning
progress can be lost [20]. The target network parameters
θt are updated towards the primary network parameters
θp based on a certain schedule with a small learning rate
ηt,

θt ← (1− ηt)θt + ηt θp, (12)

which leads to slow adaptation but increases learning sta-
bility.

Reinforcement learning algorithms have to tradeoff be-
tween exploring new areas of the state space and exploit-
ing the so-far learned policy. Since in our case exploiting
with a poor initial training policy rarely leads to success-
ful episodes, we employ a training schedule with three dif-
ferent phases [20]. For the first K1 episodes, we employ
only exploration to train state perception. After that, we
proportionally increase the exploration probability Pexploit

until episode K2. After that, we only train with exploita-
tion for learning the state-action value function.

4.3. Behavior Policy with Informed Action Sampling

Q-learning is an off-policy reinforcement learning algo-
rithm which means, that during training episodes, actions
can be selected ad libitum. This allows us to collect tran-
sitions for learning with a behavior policy that is different
from the learned policy to exploit background and domain
knowledge. Usually, the behavior policy is an ε-greedy
policy which most of the times follows the so-far learned
Q-function and less often selects a random action. It can,
however, be useful to assist an off-policy learning algorithm
by exploring high-reward regions [60]. In our case, taking
random exploration actions quickly fills the replay buffer
D with transitions that lead to failure in the task. This
is because random tool movements easily cause collisions.
As a result, the replay buffer is biased towards experi-
ence with negative outcome which leads to slow progress
towards learning in the task.

For our nonprehensile rearrangement task, we are par-
ticularly interested in a complete exploration heuristic that
samples actions such that collisions are infrequent but that
does not preclude certain types of experiences a priori.
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Figure 4: For exploration, we model the environment with ob-
stacles (red squares) as a Gaussian potential field and sample
actions according to local potential changes. This process se-
lects actions leading away from obstacles more frequently than
actions leading towards obstacles. Arrow length indicates ac-
tion probability. For illustration, we sample actions uniformly
(red) and according to our distribution (blue) starting from the
same position. Red paths lead to collisions more often than
blue paths.

One way to create an informed sampling heuristic is to
model the environment by a potential field U and to de-
rive from it an action distribution PA which depends on
local potential change. Such a distribution has a lower
frequency of actions moving the tool close to obstacles,
because it increases potential, and higher frequency of ac-
tions moving the tool into an obstacle-free region, because
it decreases potential as illustrated by blue dots in Fig-
ure 4.

Specific to our nonprehensile rearrangement task, we
model the table top environment by a mixture of two-
dimensional and smooth object potential function U(p).
The potential function for each obstacle i is factorized ac-
cording to dimensions and centered at the obstacles posi-
tion pobs,i,

Ui(p) = ϕ(px;pobs,i
x , σi)ϕα(py;pobs,i

y , σi), (13)

where subscript x and y are used to refer to dimensions
one and two respectively. The individual factors are de-
fined by the normal distribution function ϕ and the skew-
normal distribution function ϕα with shape parameter α
for modeling obstacles. Since we assume that the tool is
oriented along the Y -axis, this means that the potential
field is steeper in front of an obstacle which puts stronger
emphasize on avoiding collisions.

Similar to a common approach in planar navigation
[61], we identify locally optimal motion directions θ ∈
[0, 2π] at a point p ∈ R2 by considering instantaneous
potential change in the field with respect to a motion di-
rection. To this end, we integrate the instantaneous po-
tential change in U at position p over angle intervals Ia
for each action a ∈ A,

∆(a,p) =

∫
θ∈Ia
∇vθU(p) dθ. (14)

In this integral, we use the directional derivative of the

potential field with respect to a vector vθ = [sin θ, cos θ]ᵀ,

∇vθU(p) = vθ ·
∂U(p)

∂p
, (15)

which is defined by a dot product of the direction vθ and
the gradient vector where ||vθ||= 1. We define the angle
intervals Ia by splitting the interval θ between − 1

8π and 9
8π

into five equally sized segments centered at each action’s
motion direction, as shown in Figure 2.

We model the distribution PA for sampling actions by
relating the probability of an action to the instantaneous
potential changes ∆(a,p). This means that higher change,
which indicates increased required effort in the direction of
an action, results in lower action probability. We therefore
formulate the distribution PA using a normalized exponen-
tial function,

PA(a | p) =
exp(−∆(a,p))∑

a′∈A exp(−∆(a′,p))
, (16)

which assigns higher probability to larger instantaneous
reduction of potential.

4.4. Estimating Informative Gradient

As explained in Section 4.3 before, at the beginning of
learning our nonprehensile rearrangement task, episodes
will predominantly terminate with failure. This means
that the common approach of inserting every transition
into the replay buffer D and uniformly sampling to ap-
proximate L(θp) [20, 62, 63, 64] will be heavily biased to-
wards transitions that lead to failure. In our experience,
this hampers learning to the extend that it can completely
fail to solve the task. Instead, for successful training, ex-
periences sampled from D should be informative and rep-
resentative. Such issues can be addressed by prioritizing
certain types of experience [63].

In our experience, this means that sampled experiences
should come from both successful and failing episodes in
equal shares to provide informative gradients for optimiz-
ing the parameters θp. To avoid over-representing either
failed or successful episodes in training data, we selec-
tively store experiences in D. If the ratio of successful
experiences ρ in the replay buffer is below the threshold
ξmin, we store failing experience only with the probabil-
ity Pstore = 0.1. If, in contrast, ρ is above the threshold
ξmax, we store success experience only with the probability
Pstore = 0.1. This algorithm is expressed in listing 2. In
any case, if the replay buffer is filled to maximal capacity,
the oldest experience is displaced by the new experience.
In this way, we can reduce redundant data while still tak-
ing in new experience. In experiments we set ξmin = 0.3
and ξmax = 0.7.

5. POLICY TRANSFER

In this section, we explain how we transfer the policy
that we learned in simulation to a real-world robot. As
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Algorithm 2 Training Data Set Curation

1: Analyze episode E for failure or success
2: if E was success then

3: Pstore ←

{
0.1, ρ > ξmax

1, otherwise

4: else

5: Pstore ←

{
0.1, ρ < ξmin

1, otherwise

6: end if
7: for e ∈ E do
8: Insert e into D (with displacement)
9: end for

described in Section 4, the policy is encoded by the Q-
function which is modeled as a deep convolutional neural
network Qsim and takes simulated camera images xsim as
input. Therefore, we pose the problem of transferring the
policy as learning a new function Qreal on real camera im-
ages which outputs the same values as Qsim for real images
xreal that correspond to simulated xsim of the same scene.
Conceptually, this means that we operate in three different
data regimes: The training regime where we use simula-
tion data xsim for learning the policy, the transfer regime
where we use both, simulation xsim and real-world data
xreal with additional instrumentation for ground truth la-
beling, and the test regime where we only use real-world
data xreal. Below, we first explain why this transfer is
needed by describing the difference between the simula-
tion and real-world. We then explain how we collect a
data set of corresponding images C for transfer learning
and finally formulate the transfer as a supervised learning
problem.

5.1. Difference between Simulation and Reality

Although robot simulators such as Gazebo [28] allow us
to collect experience in a couple of hours that would take
months to collect in reality, for end-to-end reinforcement
learning, they have the drawback that they do not per-
fectly capture reality in terms of perception data and phys-
ical properties. Therefore, models that are trained only
with synthetic data from a simulator cannot be expected
to generalize well to real robots. For instance, in our case,
the Q-function Qsim trained in Section 4 has a success rate
of 0% when employed for controlling a real robot with real-
world input data. This is exemplified in Figure 5, where
Qsim moves the robot into a collision even though the di-
rect path to the target location is unobstructed.

In our nonprehensile rearrangement problem, the main
difference between the two domains lies in perception data.
A simulated image and real camera image of identical sit-
uations show significant differences in color and reflection
of light, as well as the relative and absolute size of ob-
jects, robot parts, and the table top surface. We argue
that no matter how hard we try to model the real scene
in simulation, the light and the camera position would not
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Figure 5: Q-value outputs of different Q-functions for simulated
and real images. Qsim selects the correct action in simulation
but provided with a camera image of the real scene, it selects an
action that leads to collision. After transfer learning of Qreal,
only the AFE approach leads to the correct policy and selects
action 2.

be exactly the same. Additionally, the predictable and
repeatable nature of the simulation images and the wide,
unpredictable diversity of real-world images makes bridg-
ing the gap even more difficult.

In contrast to the difference in visual perception, the
difference in the relevant physical properties between sim-
ulation and reality is comparatively minor. As explained
in Section 3.1, we assume that our nonprehensile rear-
rangement problem exhibits quasi-static dynamics. For
this reason, interactions that occur in the nonprehensile
rearrangement problem, are modeled with sufficient accu-
racy and we do not observe obvious difference.

5.2. Transfer Learning Data Set Collection

We collect a data set of pairs of corresponding images
C = {(xreal

i ,xsim
i )}i that show the same scene as a cam-

era image xreal
i and as a simulation rendering xsim

i . Since
re-creating a simulated scene in reality is difficult and in-
volves precise manual adjustments, we decide to instead
manually create random scenes in reality and automize re-
creation of the scene in simulation. For this, we introduce
an additional RGB-D sensor with a calibrated pose rela-
tive to the robot. With this sensor, we collect point cloud
data χreal that allows us to obtain all relevant informa-
tion to re-create the scene virtually. The RGB-D sensor
is placed at a different location than the robot’s camera
and can see the whole table top without obstruction. This
additional sensor is only available during data collection
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and therefore the algorithm in Listing 3 cannot be used to
control the robot.

We begin by re-setting the real robot to one of its ran-
dom starting states j ∈ J0 at the end of the table top and
placing the manipulation object some distance in front of
that region. Then, we randomly arrange the obstacles in
the area between the target location and the manipula-
tion object. In the next step, we collect the camera image
xreal and point cloud data χreal. Using computer vision
methods we extract the obstacle positions {pobs,i}i and
the position of the manipulation object pman from χreal.
For this, we match the cube models with the 3D point
cloud obtained form the depth sensor, using the Iterative
Closest Point (ICP) [65, 66] algorithm. Point cloud data
χreal and ICP results are exemplified in Figure 1. For prac-
tical reasons, the target location ptarget is kept constant
for transfer learning and evaluation in this paper and does
not have to be extracted.

After initializing the simulation with the values of pman,
{pobs,i}i, and j, we move the simulated and real robot in
parallel to collect corresponding images using either ran-
dom actions or optimal actions. For optimal actions, we
use the rendered image xsim and the learned Q-function
Qsim in Equation (2). In this way, we get the correspond-
ing images (xreal,xsim), which we collect in the data set C.
This process is summarized in Figure 1 and example pairs
of images can be seen in Figure 1(center) and Figure 5.
Positions of manipulation tool, manipulation object, and
obstacles in training data can be seen in Figure 8 in the
experiment section.

Algorithm 3 Transfer Data Set Collection

1: Initialize transfer data set C
2: for all transfer episodes do
3: Re-set the real robot to initial joint state j ∈ J0

4: Manually create random scene in reality
5: Perceive image xreal and point cloud χreal

6: Extract {pobs,i}i and pman from χreal

7: Reset simulation with {pobs,i}i, pman, and j0
8: Render image xsim in simulation
9: Add pair (xreal,xsim) to C

10: while episode not terminated do
11: Select optimal a← arg maxa′∈AQsim(xsim, a′)
12: Execute action a in simulation and reality
13: Perceive image xreal

14: Render image xsim in simulation
15: Add pair (xreal,xsim) to C
16: end while
17: end for

5.3. Supervised Policy Transfer

Using pairs of corresponding images (xreal,xsim) ∈ C
from the transfer learning data set and the already learned
Q-function Qsim, we learn a new Q-function Qreal with su-
pervised learning. Our goal is that Qsim and Qreal map to

the same values when provided with corresponding input
images xsim and xsim. If this is the case, the same action is
optimal in both simulation and reality which means that
the same policy is encoded by Qsim and Qreal for their
respective domain.

To achieve this result, we have to minimize the differ-
ence in Q-value that is predicted by Qsim and Qreal for
each of the actions a ∈ A. Our loss function for this learn-
ing problem therefore consists of the squared difference in
Q-value summed over all actions,

L(θreal) =

|C|∑
i=1

∑
a∈A

(
Qreal(xreal

i , a;θreal)−Qsim(xsim
i , a;θsim)

)2
.

(17)

In the equation above, θreal stand for the parameters of
the Q-function on real images Qreal and θsim stands for the
parameters of the Q-function learned in simulation Qsim.
The values of the latter, i.e. Qsim(xsim

i , a;θsim), serve as
the supervised targets for the former, Qreal(xreal

i , a;θreal).
First we considered learning the parameters of Qreal de
novo utilizing only the comparatively small number of tar-
get values provided by C but this does not generalize well
to other scenes, as discussed in experiments in Section 7.
Similarly, we evaluated the naive approach of fine-tuning
Qsim starting with the parameters θsim with real-world
data, but the performance was not as good as in simu-
lation, as reported in Section 7. For this reason, we de-
cide to design the model for Qreal based on the model of
the already learned function Qsim. Concretely, we initial-
ize the model for Qreal with the structure and parame-
ter values of Qsim and then optimize the loss function in
Equation (17) by modifying the structure and adapting
the parameters. Our approach is motivated by the fact
that structure and parameter values of Qsim already con-
tain task-relevant knowledge and only need to be adapted
to the new domain.

In our experiments, we consider three different strate-
gies of modifying and adapting the function model of Qsim

in order to learn Qreal.

1. We retain the structure of Qsim but re-initialize all
parameters and train Qreal de novo as a baseline.

2. Since the difference between the two domains is pri-
marily visual, we copy Qsim exactly and then adapt
only the parameters of the feature extraction part
consisting of the convolution layers.

3. To provide more flexibility, we introduce two new
fully connected layers after the convolutional part as
shown in Figure 3 and adapt the convolutional layers
and the two new fully connected layers.

For brevity we refer to these as learning de novo (LDN),
adapting feature extraction (AFE), and adapting with ad-
ditional flexibility (AAF).
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Table 1: System Parameters

Parameter Notation Value

Primary-Net Learning Rate ηp 10−4

Target-Net Learning Rate ηt 10−3

Replay Buffer Size |D| 200, 000
Discount Factor γ 0.99

Episode Limit Tmax 150
Reward Weights α1, α2, α3 0.1, 0.2, 1

Buffer Policy ξmin, ξmax 70%, 30%
ε-greedy K1, K2 200, 5000

Action Scale da 1cm

6. POLICY LEARNING EXPERIMENTS

In this section, we evaluate our approach to learning
a nonprehensile rearrangement policy in simulation. For
this, we first present our simulation setup, describe data
collection, and provide detail on model training. We em-
ploy the simulation setup to quantitatively evaluate the
learned policy. Additionally, we provide qualitative exam-
ples that demonstrate how our approach reacts to sudden
changes from external influences and what the effects of
slight changes of physical properties are.

6.1. Simulation Platform and Setup

We use Gazebo [28] to simulate a Baxter robot. The
simulation considers physical properties such as mass, fric-
tion, and velocities, but these are not known to the robot.
A customized manipulation tool is mounted on the left
hand of Baxter as seen in Figure 2. The robot only con-
trols its left arm to interact with the environment and we
use joint space motion planning [67] to generate the five
actions a ∈ A. The manipulation object and obstacles are
represented by 4 × 4 × 4 cm cubes. The target region is
indicated by a 6× 6 cm square. An execution is successful
if the horizontal distance between the centers of manipu-
lation object and the target region is less than 2 cm. For
perception, we simulate a fixed camera beside the robot
as shown in Figure 1(left). We define a work-surface of 30
by 50 cm on the table top in which the manipulation tool
can reach all positions.

6.2. Data Collection and Learning

For each training episode, we initialize the robot in the
starting pose and randomly place the manipulation object
in front of the manipulation tool. The number of obstacles
is fixed to 2 for data collection, however in evaluation, we
will use more obstacles. The obstacles are placed randomly
while at least one obstacle is directly placed between the
manipulation object and the target location making ob-
stacle avoidance necessary. We set the maximal episode
length to Tmax and execute the learning algorithm from
Listing 1 to select actions and update the network.

For comparison and insight into the effects of our pro-
posed methods, we train Qsim de novo in three different
regimes:

1. Without any of our newly proposed modifications as
a baseline (BL).

2. With training data set curation (DC).

3. With training data set curation and heuristic explo-
ration (DCHE).

In each of the three regimes we use approximately 600k
transitions from about 10k episodes.

The training parameters listed in Table 1 are empir-
ically determined with regard to performance and com-
putation resources. Training is performed with a single
Nvidia GeForce GTX 1080 Ti GPU using Adam [68] with
mini-batch size set to 32.

6.3. Quantitative Evaluation

For quantitative evaluation of the learned policies, we
consider the ratio of successfully terminated episodes (suc-
cess rate) and compare their efficiency in solving the task
by the number of actions they require to reach successful
termination. Both quantities are estimated using a large
set of random nonprehensile rearrangement problems.

6.3.1. Influence of Curation and Heuristic Exploration

In section 4.3 and 4.4, we argued that an unbiased
training data set D is beneficial and proposed training data
set curation and heuristic exploration. We evaluate the in-
fluence of the two newly proposed methods by inspecting
the training data set at different stages during the train-
ing process. Since ξmin = 0.3 and ξmax = 0.7, the ratio of
success transitions should quickly reach 30% and not rise
above 70% when both methods are used.

As shown in Figure 6(a), the 30% mark is quickly
reached when both methods are used (DCHE). Only data
set curation reaches the mark after 1,500 episodes (DC)
and the training regime without modifications requires
about 5,000 episodes (BL). The training regime without
modifications does not reach 50% of success transitions
in D until about episode 7, 000 and stays below 20% till
episode 4, 000. Adding training data set curation improves
this to 50% at episode 5, 000. By additionally applying
heuristic exploration, 50% is already reached at episode
3, 000. Both DC and DCHE finally reach and level out at
70% as intended by setting ξmax = 0.7.

6.3.2. Success Rate

During training, we evaluate each model every 1, 000
episodes and using 300 random scenes. As shown in Fig-
ure 6(b), the BL approach improves slower than the other
two approaches and takes 5, 000 episodes until reaching
50% success rate. The DC approach starts better than
BL and reaches 50% success rate already between 3, 000
and 4, 000 episodes. For the DCHE approach, the success
rate reaches 50% before 2, 000 episodes and is stable and
converged around episode 10, 000. We can observe rapid
improvement until episode 6, 000 where success experience
in the reply buffer reaches the upper limit of 70%. All ap-
proaches finally reach similar success rates. This indicates
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Figure 6: (a) The ratio of success episodes in the training data set D when ξmin = 0.3 and ξmax = 0.7. BL: Standard replay
memory. DC: With data set curation. DCHE: With data set curation and heuristic exploration. (b) The success rates against
the number of experienced episodes. (c) The average number of actions taken to accomplish a random task for DCHE versus a
human operating the robot with a keyboard. (d) The success rate in test scenes with 2, 3 and 4 random obstacles for DCHE.

that sufficient success experiences in the reply buffer is cru-
cial for increasing performance fast. Finally, we achieve a
success rate of 85% indicating that the learned network
can effectively handle the task of nonprehensile rearrange-
ment. The same-level success rate is also achieved by DC
and BL but much slower.

For comparison, we also test the success rate of a trivial
strategy that moves the tool on a straight line to the tar-
get location. We obtain the manipulation object position
from the simulator and move the robot gripper manually
to collect the object. Then, we program the gripper to
move straight to the target location. With this strategy,
collision with the obstacles is the only reason for a fail-
ure. The success rate of this strategy is 6.67%, estimated
from 300 random scenes. This indicates that perceiving
the obstacles and actively avoiding them is necessary for
success.

6.3.3. Number of Actions

The average number of actions that are needed to solve
a nonprehensile rearrangement task indicates how efficient
the policy is. Therefore, we compare the average num-
ber of actions during different stages of training with both
training data curation and heuristic exploration (DCHE)
to human performance using also 300 random scenes. The
data about human performance is collected from a human
subject who can only see the same input as the robot and
presses arrow keys on a computer keyboard to control the
manipulation tool in the 2d workspace. The results are
shown in Figure 6(c).

During the initial phase of training, the policy can only
solve trivial instances of the problem and therefore has
a low average of used actions. After experiencing 4, 000
episodes, the number of actions decreases rapidly from
100 to below 70 until 6, 000 episodes from where on the
number only decreases slowly to below 60. Compared to
this, the human subject used on average below 40 actions.
We attribute the larger number of actions required by the
learned policy to its more conservative collision avoidance
behavior since we observe it tends to keep away from ob-
stacles.

6.3.4. Different Number of Obstacles

The training environment only contains 2 randomly
placed obstacles but we are interested in whether the learned
policy is limited to this number. For this reason, we evalu-
ate the policy trained with training data set curation and
heuristic exploration (DCHE) using 2, 3 and 4 obstacles in
300 random scenes for comparison. If the policy can solve
the task with more than two obstacles the learning process
must have generalizable knowledge about the task.

The resulting success rates are shown in Figure 6(d).
The highest performance is with 2 obstacles and decreases
from over 80% to below 80% for 3 obstacles. For 4 obsta-
cles the success rate is about 60%. However, when more
obstacles are added, the task also becomes more difficult.
This can be observed in the example solutions shown in
Figure 7(a-b). Also, in some cases, the target location is
fully blocked by the randomly placed obstacles.

6.4. Qualitative Evaluation

One advantage of a learned policy as compared to a
planning-based approach to nonprehensile rearrangement
is that no computationally expensive re-planning is needed
if an unforeseen event happened. In our case, the Q-
function is computed in about 3ms which allows on-line
reactive behavior. Below, we test the robustness of our
policy (learned with DCHE) by moving objects and adding
distractors during execution, as well as setting the friction
coefficient to a different value from training.

6.4.1. Modifying the Environment

First, we test the effects of changing the position of the
manipulation object. As seen in Figure 7(c-d), the robot
adjusts and still collects the manipulation object. Next,
we change the position of one of the obstacles to block the
direct path to the target location. Figure 7(e-f), shows
that the robot adapts and still solves the task. Finally, we
change the target position. As seen in Figure 7(g-h), the
robot also adjusts to this and moves into the direction of
the new target.
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(a) 3 obstacles (b) 4 obstacles (c) Before object moved (d) Object moved (e) Before obstacle moved

(f) Obstacle moved (g) Before target moved (h) Target moved (i) Low-friction (j) Distraction object

Figure 7: Qualitative experiments in simulation to investigate the robustness of the network. (a-b) Example executions when
3 or 4 obstacles were randomly positioned. (c-h) Reactive path re-planning when the manipulation object, obstacles or the
target positions were suddenly moved. (i) Reactive action planning in a low-friction environment. (j) Example execution when a
distraction object (yellow) was involved.

6.4.2. Changing Friction

During training of the policy, we assumed that the ma-
nipulation object only moves because of interaction with
the manipulation tool. In this test, we significantly de-
crease the friction coefficient between the manipulation
object and the table top such that the object will begin
to slide after each action in order to see whether the pol-
icy is limited to the dynamics of the training phase. In
Figure 7(i), we can see that although the object path is
jittering during the execution, the robot still solves the
task. This example is also presented in the complemen-
tary video.

6.4.3. Adding Distraction

When the policy is trained, there are no other objects
placed on the table top besides the obstacles, the manipu-
lation object, and the visual marker for the target region.
In this test, we introduce a yellow distraction object on
the table top to see whether the policy will discover the
new obstacle and react appropriately. As shown in Fig-
ure 7(j), the robot still completes the task. However, it is
worthwhile to note that the distraction object is pushed
which means that it is not considered as an obstacle by
the policy.

7. TRANSFER LEARNING EXPERIMENTS

In this section, we use the learned Q-functionQsim from
the previous experiments and transfer it to a real-world
robot. For this, we use the three different methods of su-
pervised transfer AFE, AAF, and LDN that are discussed
in Section 5.3. Below, we first describe the robot platform

and sensor setup, then we provide details about data col-
lection, and document the training process. We evaluate
the transferred policy quantitatively based on success rate
and qualitatively by modifying the environment during ex-
ecution. Besides this, we conduct experiments where the
real-world camera is placed in a different position from the
simulated camera.

7.1. System Setup

Our experiments are conducted with a real Baxter robot
placed against a table. The program is run on a computer
with Intel i7-6850K CPU and a single Nvidia GeForce
GTX 1080 Ti GPU. The network forward time for all ar-
chitectures is around 4 milliseconds, which is negligible
compared to action time. The executing time of each step
is limited by the ability of the robot. In our case each step
is around 0.6 second for Baxter. In average, 60 steps are
needed for one episode as reported in Figure 6(c). Thus
there is around half minute for finishing the task.

The images xreal are collected with a Logitech C920
webcam while the point cloud data χreal is collected with
a Kinect One RGB-D sensor. The camera is first placed
in approximately the same position as in simulation, but
without exact calibration. The RGB-D sensor is mounted
to have an unobstructed view of the table top. The ma-
nipulation object and the obstacles are 3d-printed in the
same relative size as in simulation.

7.2. Data Collection and Learning

We follow the training data collection algorithm from
Listing 3 and collect data from 70 episodes which results
in 4,000 pairs of corresponding images in the data set C.
We remark that this process takes about 5 hours and that
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collecting similar amounts of training data as for learn-
ing Qsim is therefore not practical. For instance, it would
take approximately 715 hours to collect the 10,000 train-
ing episodes used in Section 6 for policy learning. The
episodes are randomly initialized with a constant target
location. The distribution of collected data can be in-
spected in Figure 8. It includes a large variety of positions
and covers most areas on the table top within the work-
surface. One example of corresponding images is shown in
Figure 5.

robot

object

obstacle

Figure 8: When collecting corresponding images for the trans-
fer learning data set C it is important to cover many different
situations and is not biased towards certain scenarios. This plot
visualizes the distribution of positions of the tool, manipulation
object, and obstacles on the table top that are contained in our
data set. A wide range of starting positions for the tool and
obstacles are contained. The plot also shows that the manipu-
lation object is moved to many positions on the table.

The models for Qreal are trained with Adam [68], L2
regularization, and batch size 8. The learning rate ηreal

for the supervised learning is set to 1× 10−4.

7.3. Quantitative Evaluation

For qualitative evaluation, we first consider training
loss and policy agreement and then investigate success rate
in real robot experiments. The loss is according to Equa-
tion (17) while policy agreement is computed as the ratio
of image pairs (xsim,xreal) ∈ C for which Qsim and Qreal

are maximized for the same action.

7.3.1. Training Results

The loss curves against training epoch for transfer meth-
ods LDN, AAF, AFE are shown in Figure 9(left) and pol-
icy agreement is shown in Figure 9(right). If the loss is
small, the models Qsim and Qreal output similar Q-values
and the policies agree the same actions are optimal.

In all three cases, the loss declines rapidly until 200
epochs, when the loss reaches about 0.01, which is after
about 3 hours of training. The loss decreases first for
strategies AFE and AAF which are both initialized with
parameter values from Qsim. But the final loss of AFE

Table 2: Success rate in reality.

Camera position Qsim Qreal Qreal Qreal Domain
AFE AAF LDN random

Similar 0% 81% 65% 60% 43%
Distinct 0% 72% 66% 31% 0%

is higher than AAF and LDN, which allow the evolution
of fully connected layers. Policy agreement increases with
the decrease of loss where the same level ratio are achieved
by strategies AAF and LDN.
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Figure 9: Training processes when camera in similar position
and distinct position. Loss in training and policy agreement
are presented to observe the behaviors of 3 different strategies:
AFE, LDN and AAF.

7.3.2. Success Rate

We evaluate the three models learned by the transfer
strategies after 200 epochs of learning and Qsim on 100
random real-world rearrangement problems each. Success
rates are shown in Table 2. For comparison, we also in-
clude a domain randomization baseline [49]. For this, sim-
ulation is randomized with different light intensities, the
camera position is changed randomly, and Gaussian noise
is added to the captured images. The success rate is ob-
tained by directly applying the learned policy in the real-
world.

Applying the Qsim to control the real robot with real
camera images results in 0% success rate. As exemplified
in Figure 5, the selected actions are completely useless.
The best performance is achieved by AFE with 81% suc-
cess rate, which is at the same level as Qsim in simula-
tion. One example execution of this model is as shown in
Figure 10(a). In contrast to the training losses, strategies
AAF and LDN perform worse than AFE in real-world tests
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(a) Experiment example (b) Unseen obstacles introduced (c) Wooden tabletop (d) Distinct view angle

(e) Before obstacle moved (f) Obstacle suddenly moved (g) Before object moved (h) Object suddenly moved

Figure 10: Experiments in reality. (a-b) Example executions in normal scene and when unseen obstacles were introduced. (c)
Example execution on a wooden tabletop. (d) Example execution when the position of the camera was placed distinct from the
original one. (e-f) Reactive path re-planning when the manipulation object or the obstacles were suddenly moved.

and result in success rate of 65% and 60% respectively. We
assume that this indicates that these two models are over-
fitting to the training data. The success rate of fine-tuning
Qsim is the same as AAF, 65%.

The success rate of domain randomization is 43%. It
is successful in the most simple scenarios where the ob-
stacles do not block the direct path but it is prone to fail
when moving close to obstacles is necessary. The policy
often collides with obstacles when an accurate motion is
needed, which indicates that domain randomization is not
sufficient to handle accurate transfer. Besides that, we also
observed failure modes where the policy moved the manip-
ulation object away from the work-region for no apparent
reason. This shows the difficulty of domain randomization.

7.4. Generalization Test

Similar to the evaluation in simulation above, we are
interested in how the policy reacts to different types of
unforeseen events. For this reason, we move obstacles and
manipulation object during execution and introduce ob-
stacles with different shapes from the ones observed in
training data. Also, we test the transfer performance to a
wooden tabletop. All experiments are conducted with the
AFE trained model of Qreal.

7.4.1. Moving Manipulation Object and Obstacles

First, we move the obstacle to block the direct path to
the target location. As seen in Figure 10(e-f), the robot
reacts by moving around the obstacle. When we move the
manipulation object as seen in Figure 10(g-h), the robot
changes its behavior and reacts by collecting the objects
from its new positions. In both cases, the robot shows
enough flexibility to still solve the task.

7.4.2. Obstacles with Different Shape

In training we used two red cube-shaped obstacles but
now we introduce obstacles of different shapes as seen in
Figure 10(b), where it shows that the robot pushes the
manipulation object around the new type of obstacle and
can still solve the task. Because one of the novel obsta-
cles is longer and more difficult for collision avoidance, the
success rate with these two unseen obstacles is 78%, which
is just a little worse than when tested with cube objects
only. This indicates that the learned obstacle avoidance
behavior is not restricted to only the training objects and
can generalize to objects of different shapes and sizes.

7.4.3. Different Tabletop

After the experiments on a table which is similar to
the one in simulation, we collect the data on a wooden
table surface and test our transfer method. The data size
and experiment setup is the same. As presented in Fig-
ure 10(c), the policy can still solve the task. The success
rate is 80%, which is nearly the same as the previous en-
vironment.

7.5. Distinct Camera Position

In the experiments above, we placed the camera at a
similar position as simulation. This means that the pairs
of corresponding images (xsim,xreal) show the scene from
a similar angle. In this experiment, we place the camera
position in an angle that differs significantly from simula-
tion. In Figure 5, we can see how the image differs from
the simulated image. Again, we transfer the policy with
the three different strategies LDN, AFE, and AAF and
perform the same quantitative evaluation as above. The
results are shown in Figure 9 and Table 2 next to those
from similar camera position.
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Figure 9(bottom) shows that the losses are larger than
with similar camera position and that the ratio of identi-
cal actions is lower. As seen in Table 2, the success rates
for strategies AFE and LDN decrease from 81% to 72%
and from 60% to 31% while the value for strategy AAF
remains similar. We remark that strategy AFE with dis-
tinct camera position still performs better than strategies
AAF and LDN with similar camera pose even though they
have a better ratio of identical actions. Interestingly, the
performance of strategy AAF which introduces two new
fully connected layers does not decrease. This could mean
that introducing these layers allows for better adaption to
change of viewing angle.

We also tested the the policy trained with domain ran-
domization for this distinct camera angle. Since the cam-
era angle in this experiment is significantly different from
the one in the simulation, it is very difficult for domain
randomization to generalize over. As expected, we have
seen that the network cannot solve the problem for even
very simple scenarios.

An example of the experiments is as shown in Fig-
ure 10(d). In this viewing angle, parts of the obstacles are
occluded by the manipulation tool, which may cause the
localization of the objects failed.

7.6. Feature Maps

Finally, we inspect the models’ feature maps to see if
similar features are relevant in both domains. In Figure
11, we show feature maps of Qsim and two version of Qreal

for corresponding images of the same scene in simulation,
with similar camera position, and with distinct camera
position. The feature maps are extracted at the last layer
before the fully connected layers and both version of Qreal

are trained with the AFE transfer strategy.
The feature maps of Qsim and Qreal for similar camera

pose mostly show activations in similar locations. Since
AFE initializes Qreal with Qsim and the fully connected
layers are kept constant, this is not surprising. However,
it shows that in Qreal, the layers before the depicted fea-
ture map are now adapted to provide similar activations
as in Qsim from real-world images of the scene. Compared
to that, the feature maps of Qsim and Qreal for distinct
camera pose show less similarities. In many cases, the
activations in Qreal are less unique and often in different
locations. Since the AFE transfer strategy keeps the fully
connected layers constant, this explains the drop in per-
formance from similar to distinct camera pose observed in
Table 2.

8. CONCLUSION

In this paper, we have formulated nonprehensile ma-
nipulation as an end-to-end learning problem. For this,
we modeled the task as a reinforcement learning problem
and used a transfer learning method based on a data set
of corresponding simulated and real-world data to trans-
fer learning results obtained in simulation to real-world

(a) (b) (c)

Figure 11: Feature maps of Qsim and Qreal for corresponding
images xsim and xreal of the same scene. Feature maps are
extracted at the last layer before fully connected layers and the
transfer strategy is AFE such that the fully connected layers
are identical. (a) Qsim. (b) Qreal with similar camera position.
(c) Qreal with distinct camera position. When comparing (a)
and (b) similarities can be found that can be interpreted as
detecting objects at similar locations. Compared to that, (c)
has less unique activation and is more distinct from (a).

input data. Unlike classic, planning-based methods, this
approach does not rely on explicit perfect perception of the
state or an accurate physical model. While training our
approach relies on a large amount of virtual experience, as
typical for deep reinforcement learning, only a small num-
ber of aligned real-world data is required for learning. To
enable successful reinforcement learning in this problem
domain, we additionally proposed a potential-field-based
heuristic exploration method and active data set curation
to provide the learning algorithm with a balanced data set.

We quantitatively evaluated the performance in simu-
lation and reality and obtained success rates of 85% and
81% in random scenes. Since we recorded worse results,
including complete failure to solve the task when removing
the suggested components, this implies that our contribu-
tions are essential in solving this task. Qualitatively, we
showed our system’s reactive, adaptive, and robust behav-
ior with regard to environment change between training
and execution as well as during execution, such as the
sudden change of object positions, changing low-friction
coefficient, and previously unseen obstacles.

In the future, we will consider integrating more types of
sensors, such as tactile and depth sensors, into our system
to supply more information and enable cross-modal sens-
ing ability to better perceive the manipulation environ-
ment and better understand the task space. Furthermore,
our method is limited by the need for collecting a small
amount of aligned cross domain training data for transfer.
In future work, we plan to remove the step of recording
aligned data and instead want to generate aligned data
using generative adversarial models [51].
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