IEEE TRANSACTIONS ON ROBOTICS, 2020

Calculating the Support Function of Complex
Continuous Surfaces With Applications to Minimum
Distance Computation and Optimal Grasp Planning

Yu Zheng, Senior Member, IEEE, and Kaiyu Hang, Member, IEEE

Abstract—The support function of a surface is a fundamental
concept in mathematics and a crucial operation for algorithms in
robotics, such as those for collision detection and grasp planning.
It is possible to calculate the support function of a convex body
in a closed form. For complex continuous, especially non-convex,
surfaces, however, this calculation can be far more difficult
and no general solution is available so far, which limits the
applicability of those related algorithms. This paper first presents
a branch-and-bound (B&B) algorithm to calculate the support
function of complex continuous surfaces. An upper bound of
the support function over a surface domain is derived. While
a surface domain is divided into subdomains, the upper bound
of the support function over any subdomain is proved to be not
greater than the one over the original domain. Then, as the B&B
algorithm sequentially divides the surface domain by dividing its
subdomain having a greater upper bound than the others, the
maximum upper bound over all subdomains is monotonically
decreasing and converges to the exact value of the desired support
function. Furthermore, with the aid of the B&B algorithm, this
paper derives new algorithms for the minimum distance between
complex continuous surfaces and for globally optimal grasps
on objects with continuous surfaces. A number of numerical
examples are provided to demonstrate the effectiveness of the
proposed algorithms.

Index Terms—Bounding volume, branch-and-bound, collision
detection, computational geometry, distance, grasp planning,
support function.

I. INTRODUCTION

HE support function of a surface along a vector is defined

to be the maximum inner product of the vector with the
points on the surface and such a point at which the maximum
inner product is obtained is called the support mapping, where
a surface can be described by parametric functions and is
generally a set of infinite points in space. While the support
function is a fundamental concept in mathematics, it is a
crucial operation in algorithms for important problems in
robotics, including collision detection and grasp planning. In
some cases where the surface is convex and the inner product
of the vector with a point on the surface is a convex function
of the surface parameters, the support function and mapping
could be calculated by a convex optimization algorithm or
occasionally in a closed form. In many more cases, however,
a surface can be nonconvex, nonlinear, and have no explicit

Manuscript received

Y. Zheng is with Tencent Robotics X, Shenzhen, Guangdong Province,
China (e-mail: petezheng @tencent.com).

K. Hang is with the Department of Mechanical Engineering and Ma-
terial Science, Yale University, New Haven, CT 06511 USA (e-mail:
kaiyu.hang @yale.edu).

expression, which makes it hard to compute the global max-
imum value of the inner product and the exact value of the
support function, not to mention a closed-form solution, and
limits the application scopes of those important algorithms.
In this paper, we first present a branch-and-bound (B&B)
algorithm to compute the support function and mapping of
complex continuous surfaces. Based on this algorithm, we
then propose not only extensions of existing algorithms but
also new algorithms for minimum distance computation and
globally optimal grasps on objects with continuous surfaces.

A. Related Work

The computing of support function and mapping is a key
step in several algorithms in robotics. First of all, the well-
known GJK algorithm [1], [2] calculates the support function
and mapping of a compact convex set at every iteration to
alter an inscribed simplex such that the minimum Euclidean
distance between the origin and the simplex converges to the
minimum Euclidean distance between the origin and the set.
Since the minimum distance is a natural choice of index to
determine if two sets or equivalently the origin and their
Minkowski difference are separated, the GJK algorithm has
been frequently used for collision detection, which is an
essential component in many software packages, such as robot
motion planners, simulators, and physics engines. Over the
next decade since it was initially proposed, the GJK algorithm
has continued to be improved to achieve higher computational
efficiency on convex polyhedra and moving bodies [3], [4],
[5], [6]. While the GJK algorithm can calculate the minimum
distance between two separated sets, it cannot tell how deeply
two sets penetrate each other if they overlap. The penetration
depth of two overlapping sets is often defined as the minimum
translation required to separate them and also called the
penetration distance [7]. For compact convex sets, the pene-
tration distance can be calculated by the algorithm [8], which
iteratively expands a polytope in the Minkowski difference
such that the minimum Euclidean distance from the origin
to the boundary of the Minkowski difference converges to
the penetration distance. At every of its iteration, the support
function and mapping is calculated to determine whether and
how to continue expanding the polytope. It has been noticed
that the Euclidean separation (resp. penetration) distance be-
tween two sets can also be expressed as the maximum scale
factor of the origin-centered unit ball such that the scaled ball
does not intersect (resp. exceed) the interior of the Minkowski

IEEE TRANSACTIONS ON ROBOTICS, 2020

difference of the sets. Referring to this, Zhu et al. [9], [10],
[11] proposed a generalized distance function by replacing
the unit ball with a compact convex set as the gauge set.
Algorithms to compute the generalized distance for compact
convex sets were proposed in the work [12], in which the
computing of support function and mapping is still one of the
key operations. As a special case of the generalized distance
where the gauge set is taken to be a line segment, the ray-
shooting problem determines the intersection of a ray with
a set and can be solved by specialized algorithms, all of
which calculate the support function and mapping of the set at
every iteration [13]. In addition, computation and application
of distance can be extended to the case of a convex cone and a
point [14], which has been found useful in the equilibrium test
and contact force distribution of multi-contact robotic systems
as well as whole-body locomotion generation and control of
legged robots [15], [16], [17], [18].

In addition to collision detection, another important applica-
tion of distance functions, especially the penetration distance,
is to provide a quality measure for grasps; that is, the minimum
distance from the origin to the boundary of a so-called grasp
wrench set can be used as a quantitative index of how capable
a grasp is of applying wrenches to the grasped object [19].
During the past two decades, variants of this grasp quality
measure were proposed to achieve metric invariance [20], [10],
[21], reflect task requirements [22], [23], [24], [25], [26], and
incorporate the structural information of a robot hand [27]
or the uncertainty of friction coefficients [28], and more
efficient and accurate algorithms were developed to compute
them [29], [30], [8], [31]. These measures are often used in
grasp planning to guide the computing of optimal contact
locations [32], [33], [10], [34], [35], [36], [37], [28], [38], [26],
[39], [40], [41], [42], [43], [31]. While some grasp planning
algorithms are aimed at optimal grasps on 3-D objects with
piecewise smooth surface [10], [34], [33], [28], it is hard to
guarantee the actual optimality of the computed grasp because
the problem is a highly nonlinear optimization problem with
many local optima. Another approach is to discretize the
object’s surface and search contact locations within a set of
preselected discrete points [36], [37], [40], [42], [31]. By doing
this, the original nonlinear optimization problem is reduced to
a combinatorial optimization problem, whose best solution is
more attainable and can provide a reasonable approximation
for the globally optimal grasp on theoretically any object.

B. Our Work

In the aforementioned algorithms, the computing of support
function is currently limited to the case where a closed-form
expression can be derived. However, there are situations where
the computing of support function is a nonlinear optimization
problem, for which an exact numerical solution is hard and
a closed-form solution is even impossible to obtain. In this
paper, we first present a B&B algorithm to calculate the
support function and mapping of complex continuous surfaces.
An upper bound of the support function over a surface domain
is derived and proved to be monotonically decreasing; that is,
when the domain is divided into subdomains, the upper bound

of the support function over any subdomain will not increase.
Then, in the sequential dividing of the surface domain as the
B&B algorithm iterates, the overall upper bound successively
decreases and converges to the value of the support function
over the initial domain. Furthermore, we apply the algorithm
to several selected problems including

1) Building bounding polyhedra: Since the support function
of a surface along a nonzero vector defines a supporting
plane of the surface, we use the proposed B&B algorithm
in the algorithm [44] to compute a sequence of supporting
planes enclosing and forming a convex bounding polyhe-
dron of the surface. This computation can proceed and
finally lead to the convex hull of the surface.

2) Computing minimum distances: With the help of the B&B
algorithm for the support function, the aforementioned
distance computation algorithms [1], [2], [8] is extended
to separated or overlapping non-convex sets such that
the minimum distance between their convex hulls can be
computed without explicitly calculating the convex hulls.
Moreover, an algorithm to compute the true minimum
distance between separated non-convex sets is derived.

3) Planning optimal grasps: We use the B&B algorithm
for the support function to compute an upper bound on
the quality of grasps over a surface domain based on
the Ferrari-Canny grasp quality measure [19]. With this
upper bound, we then propose another B&B algorithm
to compute the globally optimal grasps on objects with
continuous surfaces, which is an unsolved problem in
grasping research until now.

The rest of this paper is organized as follows. Section II
describes the algorithm to compute the support function with
application to computing bounding polyhedra of complex con-
tinuous surfaces. Section III applies the algorithm to minimum
distance computation between complex bodies. Section IV
presents an algorithm for globally optimal grasps on objects
with continuous surface. Numerical examples are provided in
each of the three sections to verify the algorithm’s perfor-
mance. Section V contains the conclusion and future work.

II. A B&B ALGORITHM FOR SUPPORT FUNCTION

In this section, we present a B&B algorithm to compute the
support function of a continuous surface.

A. Problem Definition

Let S £ {f(x)|x € X} be a surface defined by a function
f X — S, as depicted in Fig. 1, where X C R™ is the
domain of f comprising the intervals for the components of
x € R™ and S C R™ is the image of X under f. Then, X is
an m-dimensional hyperrectangle in R™. Assume that f has
Lipschitz continuity such that, for Vo, x5 € X,

[f (1) = f(@2)]| < Ly — @2 (D

where L is a Lipschitz constant and || - || denotes the 2-norm
of vectors. In other words, S is a point set described by a
Lipschitz continuous function f over domain X.

IEEE TRANSACTIONS ON ROBOTICS, 2020

Fig. 1. Mlustration of the support function hg(w) of a surface S along a
vector u. The surface S is described by a continuous function f over domain
X and sg(u) is a point on S called the support mapping such that hg(u) =
uT sg(u). * consists of the variables such that sg(u) = f(x*).

The support function of S is defined as [45], [1]
2 T, T
hs(u) = maxu’ s = maxu f(x) (2)

where u is a nonzero vector in R™. Any point on S where
hs(u) is attained is called the support mapping [1], i.e.,

sg(u) £ argmaxu’ s. 3)

seS

The hyperplane with normal w passing through sg(u) is a
hyperplane of support! to S at sg(u), as depicted in Fig. 1.
If w is a unit vector, then hg(u) gives the distance from the
origin to the hyperplane. From (2), the computing of hg(u) is
generally an optimization problem. Let * denote the optimal
solution, namely the value of € X such that sg(u) = f(x*)
and hg(u) = u” f(z*). When S is such a surface that u”'s
over S or u® f(x) over X is convex, it is possible to calculate
the values of hg(u) and sg(u) as well as * by an existing
convex optimization algorithm or even in a closed form [2]. In
the general case that S or u” f(z) is non-convex, however, the
computation becomes much harder. While an analytic solution
is often unattainable, optimization algorithms could fall into a
local optimal solution, which is far from the global maximum.
Below we present an algorithm for the exact values of hg(u),
ss(u), and * in such a challenging but general situation.

B. Algorithm Description

Branch and bound (B&B) is known as an effective technique
for solving nonlinear optimization problems. Here we apply it
to the computing of the support function and mapping.

We first derive an upper bound of hg(u) over X. From (1)
it follows that the value of u”'s has Lipschitz continuity over
X as well, i.e.,

u'sy —ulsy| <|lull|sy — s2f| < Luflzy — x| ()

IThe hyperplane of support to or the supporting hyperplane of a point set
at one of its points is a hyperplane that passes through the point and bounds
the entire set to one side [45]. It seems analogous to the tangent hyperplane
but actually a different concept. The tangent hyperplane is defined only at a
regular point on a surface and bounds the surface locally rather than globally,
where a surface is deemed as a point set. If the tangent hyperplane at a regular
point bounds the entire surface, then it is the unique supporting hyperplane
of the surface at this point. At a singular point, the tangent hyperplane is not
defined but there could exist non-unique hyperplanes supporting the surface.

Algorithm 1a Algorithm for hs(u) and ss(u)

Input: u and S given by f and X
Output: hg(u) and sg(u) as well as the optimal solution x
1: «* < the middle point in domain X

*

2: 8% f(]g:*)

3: A" «—u’ 8™

4: h < the upper bound of hg(u) over X

5 X+ X

6: L0

7: while h — h* > e do

8: Divide X into subdomains X;’s

9: for each X; do

10: ; < the middle point in domain X

11: Sj f(z;5)

12: hj_(— u '§j

13: if h; > h* then

14: h* < h;

15: s+ §;

16: x* :ij

17: end if

18: h; < the upper bound of hg(u) over X
19: if h; > h* then
20: Add X to the list £
21: end if
22: end for
23: h < the maximum upper bound for domains in the list £
24: X < the domain in the list £ whose upper bound is maximal

25: Remove X from the list £
26: end while
27: return h*, s*, and x*

where s1 = f(x1), s2 = f(x2), and Ly, = L||lu|. Let & be
the center of X and § = f(&). Substituting * and & into x;
and x- in (4), respectively, yields

hs(u) —u’s < Ly|x* — 2| < Lpmax ||z —|. (5)
xzeX
From (5) we attain an upper bound of hg(u) over X as
hs(w) 2 uTs+ Ly, ma))((||mfi||. (6)
EAS

We next prove that the upper bound given by (6) is mono-
tonically decreasing in dividing X into smaller domains. Let
X be divided into 2" isometric subdomains X;’s along its
center T by bisecting each interval constituting X. Let Z; be
the center of X;. Then, maxzecx, || — x| = ||2; — z|| =

1 maxgzex || — . From (4) and (6) we further derive

7 A T _
(u) = ST -y
hs;(u) = u” 5, hal}éa}i |l — ;]

<u’s+ Ly||z; — 2| + Ly max |z — ;]|
TeX; 7

=u’5 + L, max ||z — ||
zeX

hs(u).
Therefore, the upper bound given by (6) is indeed monotoni-
cally decreasing during the dividing of X.

In fact, the definitions of support function (2) and its upper
bound (6) can be extended to any domain. For a domain that
is infinitely small and only a singleton, the upper bound is
equal to the support function.

With the aforementioned upper bound, a B&B algorithm for
hs(u), ss(u), and x* is described in Algorithm 1a. At every
iteration of the algorithm, from the list £ of domains we select
the one X for which the upper bound is the maximum, denoted
by h, among all domains and divide X into 2™ subdomains

IEEE TRANSACTIONS ON ROBOTICS, 2020

X ;. Then, we calculate the value of u”'s at the center Z; and
the upper bound ilgj (u) for each X; and add X to the list £ if
its upper bound is greater than the current best result h*, which
is the greatest value of u”'s that we have so far. Since the
upper bound is decreasing in the dividing of a domain as stated
by (7), his monotonically decreasing as the algorithm iterates.
On the other hand, h* is monotonically increasing, and hg(u)
is always bounded below by h* but above by h. Therefore,
it is guaranteed that h* converges to hg(u). Furthermore, we
can derive that the difference of the final h* terminated by the
condition h— h* > ¢ from the true value of hg(wu) is bounded
by the termination tolerance e, i.e.,

0 < hs(u)—h* <e. ®)

C. More Discussions

Here we discuss several factors that may affect the compu-
tational efficiency of Algorithm 1a.

Firstly, the choice of the Lipschitz constant Ly, in (6) affects
the number of iterations required by Algorithm la. One may
simply take a sufficiently large L; such that (4) holds for the
entire domain X. However, this will lead to an overestimated
upper bound as given by (6) and a slow convergence of the
algorithm. Instead, if function f is differentiable over X, we
can estimate L in (1) as follows and then take Lj, = L|u|| to
be used in (4),

L = max H 0f (=) 9
zeX | Oz ||p
where Jf/Ox is the Jacobian matrix of f and || - ||F is the

Frobenius norm. Another way to estimate Ly, is to directly use
the gradient of u”s = u” f(x) over X, i.e.,

0 (qu(m))

ox (10)

b= may
Usually (10) gives a smaller constant and is used in this paper.
Secondly, we notice that Algorithm la could sometimes
yield a number of domains with their upper bounds all close
to each other and slightly greater than hg(w). The reason
is that, for a domain containing or approaching the optimal
solution x*, the value u”'5 may be slightly less than hg(u)
but its upper bound is greater than h* due to the term
Ly maxgzex ||z — &|| in (6). Dividing such a domain could
generate more suchlike subdomains and for a subdomain to be
ruled out, the constant L; and/or the size of the subdomain
must be sufficiently small such that its upper bound is less
than h*. This may cause Algorithm 1a to iterate many times
before the termination condition & — h* > € can be reached.
To avoid this situation, we propose a variant of Algorithm 1a,
as described in Algorithm 1b, in which a local optimization
solver is called to compute hg, (u) for any sufficiently small
domain Xj; (ie.,
L, where | X ;| denotes the size of X; and ex is the tolerance
on |X;|. In addition, we set a maximum allowable iteration
number K for Algorithm 1b.
Here, Algorithm 1b has three user-specified parameters,
namely the termination tolerance ¢ on the value h— h*, the
tolerance ex on |X|, and the allowable iteration number K.

4
Algorithm 1b Algorithm for hs(u) and ss(u)
Input: u and S given by f and X
Output hs(u) and sg(u) as well as the optimal solution x*
1: «* < the middle point in domain X
2: s “— f(]g:
3: h* <~ u' s*
4: h < the upper bound of hg(u) over X
5 X+ X
6: L+ 0
7 k<0
8: while h — h* > e and k < K do
9: Divide X into subdomains X;’s
10: for each X; do
11: Z; < the middle point in domain X
12: 8 f(i])
13: Bj_(- 'll,ng
14: if hj > h* then
15: h* < h;
16: s+ 5;
17: T &
18: end if
19: h; < the upper bound of hg(u) over X
20: if o; > h* then
21: if | X;| > ex then
22: Add X to the list £
23: else
24: Let hJ, 3;, and &; be the values of hg; (u), sg; (u), and
x 3 computed by any optimization solver over domain X;
25: if h > h* then
26: h* —hj
27: 8% < 5
28: T* I
29: end if
30: end if
31: end if
32: end for
33: h < the maximum upper bound for domains in the list £
34: X < the domain in the list £ whose upper bound is maximal

35: Remove X from the list £
36: k+—k+1
37: end while

38: return h*, s*, and x*

The tolerance € directly controls the accuracy of the computed
result, as indicated by (8). It should be taken to be as small
as needed in specific applications. For the number K, one
can simply choose a relatively large value to avoid the early
termination of the algorithm while h — h* is still big. The
tolerance ex also affects the accuracy and efficiency of the
algorithm. In general, it should be set to a sufficiently small
value such that the local optimization solver can confidently
compute hg, (u) over any such small domain. Nevertheless, it
should also be noted that a too small ex will lead to more
domains being added to the list £, causing more domain
divisions and iterations of the algorithm. In the following
numerical tests, we try different values for e x and it turns out
that 107! is small enough for attaining an accurate support
function on four given bodies with an increasing level of
complexity (from convexity to high non-convexity).

D. Numerical Examples

We verify the performance of Algorithms 1a and 1b with
numerical examples. The algorithms have been implemented
in MATLAB and run on a desktop with an Intel Core i7-6700
3.40GHz CPU and 16GB RAM. The termination tolerance e
for h — h* is set to 1076, the number of iterations is limited

IEEE TRANSACTIONS ON ROBOTICS, 2020

(a) (b)

. o
20 l y

B — =
10
X

5
y 10 20

© ()

Fig. 2. Worst cases of computing the support function of (a) an ellipsoid, (b) one eighth of a torus, (c) a heart, and (d) a seashell. The blue arrow and the red
dot represent a given direction w and the corresponding support mapping sgs(w), respectively. The gray plane is the plane with normal w passing through

ss(u) and a plane of support to the body S.

to K = 10°, and the size | X;| of a domain is defined to be
the maximum interval in X;. In Algorithm 1b, for a domain
whose size is below a threshold ex, we call the ‘trust-region-
reflective’ algorithm with its default setting provided by the
Optimization Toolbox of MATLAB to compute the support
function over that domain.

Example 1: First, we use the algorithms to compute the
support function of several 3-D bodies including an ellipsoid,
one eighth of a torus, a heart, and a seashell, as shown in
Fig. 2. Their parametric expressions are as follows.

a) Ellipsoid:
cos 6 cos ¢
2 cos@sin ¢

3siné

where 0 € [—-7/2,7/2] and ¢ € [0, 27].
b) Torus:

S =

(6 + 1.5cos ¢) cos
(6 + 1.5cos ¢) sinf
1.55in ¢

where 6 € [0,7/2] and ¢ € [0, 27].
¢) Heart:

S =

16 sin® 6 cos ¢
8sin® #sin ¢
13 cos — 5cos 20 — 2 cos 30 — cos 46
where 6 € [0, 7] and ¢ € [0, 27].
d) Seashell:
(1 —¢%6™) cos B(1 4 cos ¢)
—(1 —¢e?/6™)sin (1 + cos ¢p)
1 —ef/3m — (1-— 6‘9/6”) sin ¢

where 6 € [0,67] and ¢ € [0, 27].
On the ellipsoid, the support function hg(u) and mapping
ss(u) can be calculated in a closed-form as [2]

hs(u) = \/uz + 4u2 + 9uZ,

Uy duy
SS<“>::[hs<u> ()

S =

hi?2>]T

where u,;, u,, and u are the three components of u. However,
the computation of hg(u) and sg(u) is much harder on the
other bodies. In each case, we then let Algorithms la and
1b compute the support function along 10% random directions
and take the threshold ex of the domain’s size to be 1071,
1072, or 1073, Tables I and II exhibit the performance of
the two algorithms, respectively. We first compare the results
from the proposed algorithms on the ellipsoid with the ones
obtained by the above closed-form expression, as displayed in
the second column of Table I and third column of Table II,
which shows that the proposed algorithms are accurate. For
the other three objects, since no closed-form expression for the
support function can be easily derived, we compare our results
with the ones by using the MATLAB’s optimization algorithm
to solve (2) over the initial domain with the domain’s centroid
as the initial point, as shown in the next columns of the tables.
It can be seen that the one-time optimization cannot guarantee
the global maximum and the computed values are notably less
than the results of our algorithms.

From Tables I and IT we further see that the two algorithms
can achieve comparable levels of accuracy, but Algorithm 1a
needs much longer computation time except on the ellipsoid.
Fig. 2 shows several worst cases where both algorithms need
a great number of iterations to terminate and Fig. 3 plots the
value of u”'s over the initial domains for # and ¢ in these
cases. It can be seen that the values of u”'s are very close
to each other or even the same somewhere and unfortunately
some or even all of them are the global maximum of u7's.
In such a case, Algorithm la will generate a large number
of tiny domains in order to reach the termination condition
h — h* < e. The use of local optimization for sufficiently
small domains in Algorithm 1b successfully prohibits unnec-
essary dividing of those domains and significantly reduces the
number of iterations while keeping the result at the same level
of accuracy. On the four objects, Algorithm 1b can achieve
both high computational accuracy and efficiency by setting the
threshold ex = 0.1, as shown in Table II.

Example 2: Since the support function defines a plane that
bounds and supports a body, we can compute a bounding
polyhedron or even the convex hull of the body by computing

IEEE TRANSACTIONS ON ROBOTICS, 2020 6

T
Y
RN
W A
MRS
0 TR
£ R
TR
R

Sy i
SRR T
RN KRS
L 3 o
N = E i
SRR 5
R RN
S ol

R8s
s

CXREIT

e g

i
L ,;:g;,;n%% ‘
Wilng

(a) (b) © (d)

Fig. 3. The value of uT's on the (a) ellipsoid, (b) one eighth of the torus, (c) heart, and (d) seashell in the cases shown in Fig. 2. The red dot indicates the
solution yielded by Algorithm 1b, which gives the global maximum of u” s in these worst cases.

TABLE I. RESULTS OF ALGORITHM 1A

ObjCCt €max €§VC tave tmax tmin Nave Nmax Nmin
Ellipsoid | 2.24 x 10=7 0.04371950 0.009 0.054 0.007 349 1993 267

Torus — 0.14482988 1.748 27.109 0.133 18141 10° 4072

Heart — 0.70123328 14.140 32.021 0.007 62457 10° 215
Seashell — 1.30161407 18231 32.606 0.247 71530 105 6058

e—The value obtained by the closed-form solution minus the one obtained by the algorithm;
e®—The value obtained by the algorithm minus the one obtained by one-time optimization;
t—CPU running time of the algorithm (unit: second);

N—Number of iteration of the algorithm;

The subscripts “max”, “min”, and “ave” represent the maximum, minimum, and average values of
the corresponding quantities obtained in the tests, respectively.

TABLE II. RESULTS OF ALGORITHM 1B

ObjCCt €X €max egvc tave tmax tmin Nave Nmax Nmin Ngvc folax Ngin
10~T | 8.64 x 10=7 0.04371952 0.033 0.100 0.019 75 102 56 14 44 9
Ellipsoid | 1072 | 8.19 x 10=7 0.04371939 0.029 0.190 0.018 220 1028 160 14 96 8
1073 | 6.06 x 107 0.04371941 0.022 0.150 0.015 325 1801 249 14 96 8
10— T —_ 0.14483025 0.015 0.055 0.008 29 49 17 7 20 4
Torus 10—2 — 0.14483011 0.064 0.521 0.029 168 896 91 37 315 18
10-3 — 0.14483027 0.286 3.157 0.065 752 7340 274 193 2426 51
10— T — 0.70123298 0.081 0.334 0.007 81 199 22 32 132 3
Heart 10—2 — 0.70123264 0.469 1.810 0.009 640 2439 54 247 966 4
103 — 0.70123259 3.188 10.679 0.011 6254 22759 94 2296 7613 6
10~ 1T — 1.30161447 0.098 0.265 0.013 181 433 34 46 138 6
Seashell 102 — 1.30161435 0.784 3.130 0.036 1208 4427 110 472 2278 22
103 — 1.30161435 5.795 35.081 0.080 12267 59474 361 4711 29851 1

N°—Times of the optimization algorithm called in Algorithm 1b. The unit for the CPU running time is second.

the support function along a series of directions and forming
a group of planes supporting the body. Such an iterative
algorithm has been described in the work [44]. Applying this
algorithm with the proposed method for computing the support
function, we can calculate bounding polyhedra for complex
as well as simple geometric bodies, as shown in Fig. 4. As
the algorithm iterates, more supporting planes are determined
and the bounding polyhedron gets tighter and can eventually
converge to the convex hull of the body. Fig. 5 depicts the CPU
running time of this computation in which Algorithm 1b is
used to compute the support function.

III. MINIMUM DISTANCE COMPUTATION
BETWEEN CONTINUOUS SURFACES

Distance is one of the most basic concepts in mathematics
and has various applications in robotics. There are many def-
initions of distance and a common definition is the minimum
Euclidean distance between points in two sets. Algorithms
have been available for computing the minimum distance be-
tween compact convex sets [1], [2], [8]. For infinite point sets

with non-convex smooth boundaries, however, the computing
of their minimum distance is difficult. In this section, based on
the previous algorithm, we discuss a solution to this problem.

A. Mathematical Definitions

Let A and B be two infinite compact sets in R"™, as depicted
in Fig. 6. The Minkowski difference between them is the set
defined as

A-B%2{a-b|lacA, bc B}. (1)

It can be proved that AN B = () (or AN B # () is equivalent
to 0 ¢ A— B (or 0 € A — B). Throughout the following
discussion we assume that A — B is of dimension n and has a
nonempty interior in R™. The Euclidean distance between A
and B is defined as [46]
dT (A, B) if ANB=1
A 9

d<A’B)—{ —d~(A,B) #AnB£p 1
where d (A, B) and d~ (A, B) are the Euclidean separation
and penetration distances, respectively, which are defined as

IEEE TRANSACTIONS ON ROBOTICS, 2020 7

& Mown

& hown

& hown

(m)

Fig. 4. Bounding polyhedra of the ellipsoid (first column), torus (second column), heart (third column), and seashell (fourth column) with axis-aligned planes
(first row) and additional 30 (second row), 60 (third row), and 90 (fourth row) planes.

+ & — : - 7y
d"(4,B) = min [t = min el (3) d~(A,B) =

t= min |t 4
tebd(A—B 2]l min)|| [(14)

min
te A—B\int(A—B) tebd(A—B

IEEE TRANSACTIONS ON ROBOTICS, 2020

(2]
o

—A— Ellipsoid
—O—Torus
—— Heart

—)— Seashell

a
o
T

N
o
T

CPU running time (s)
S 8

-
o
T

O(w . . .
0 20 40 60 80 100
Number of iterations
(a)
500 T
s —A— Ellipsoid
o 400 | |—O—Torus i
‘é’ —— Heart
= —)— Seashell
o5 300 A
R
g 20
2
E 10
Q
0 20 40 60 80 100
Number of iterations
(b)

Fig. 5. CPU running time for computing bounding polyhedra. The threshold
ex in Algorithm 1b is set to (a) 10~ ! and (b) 1072, respectively.

where int(-) and bd(-) denote the interior and the boundary
of a set, respectively. From (13) we see that d* (A, B) equals
the minimum Euclidean distance from the origin to the points
in A— B. Since 0 ¢ A— B due to AN B = () and we
assume int(A — B) # 0, d™ (A, B) is obtained at a boundary
point of A— B, as depicted in Fig. 6a. As for d~ (A, B), since
A — B\ int(A — B) is nothing but the boundary of A — B
when int(A — B) # 0, d” (A, B) is the minimum Euclidean
distance from the origin to the boundary of A — B, where the
difference from d* (A, B) is 0 € A— B because of ANB # (),
as shown in Fig. 6b.

B. Distance Algorithms

When both A and B are convex, d (A, B) and d~ (A4, B)
can be computed by the well-known GJK algorithm [1], [2]
and the expanding polytope algorithm [8], [12], as depicted in
Figs. 6a and 6b, respectively. Starting with a simplex in A— B,
the GJK algorithm calculates the support mapping of A — B
along the normal of the face containing the closest point in
the simplex to the origin and uses the support mapping with
the face to form a new simplex. By this iteration, the simplex
progressively approaches the origin and the minimum distance
between them converges to the minimum distance between the
origin and A — B or just d™ (A, B) if AN B = (. To compute
d~ (A, B) when AN B # (), the expanding polytope algorithm
iteratively grows a polytope containing the origin in A — B by
adding the support mapping of A — B along the normal of the
polytope’s closest facet to the origin as a new vertex. As the
algorithm iterates, the minimum distance from the origin to

Fig. 6. Illustration of the minimum distance d between compact convex sets
A and B. (a) A separated from B: The GJK algorithm iteratively generates
a sequence of simplices in A — B using the support mapping of A — B and
a face of the previous simplex such that the minimum distance d from the
origin to the simplex in the sequence converges to d [1], [2]. The iteration
can be terminated once d + ha_p(u) < €4, where w is the unit vector
representing the direction of the minimum distance from the simplex to the
origin and €4 is the termination tolerance. (b) A intersecting with B: The
algorithm iteratively expands a polytope in A — B by adding the support
mapping of A — B as a new vertex to the polytope such that the minimum
distance d from the origin to the facets of the polytope converges to d [8],
[12]. The iteration can be terminated once h4_pg(u) — d < €4, where u is
the unit outward normal of the facet giving the minimum distance d and e is
the termination tolerance. Please refer to relevant references for more details.

the facets of the polytope converges to the minimum distance
from the origin to the boundary of A — B or d~ (A, B).

An essential operation in both algorithms is to calculate the
support function h4_p and mapping s4_p of A — B, which
can be simplified as

(152)
(15b)

ha_p(u) =ha(u) + hp(—u),

sa—p(u) =sa(u) — sg(—u).

Thus, computing hs_p and s,_p has the same complexity
as computing ha, sa and hp, sp separately, and there is no
need to calculate the Minkowski difference A — B. When A
and B are described by continuous parametric functions, their
support functions can be computed by Algorithm 1a or 1b.
Since the support function and mapping of the convex hull
of a set are equal to those of the set itself [45], [2], if we
apply the distance algorithms [1], [2], [8], [12] to the case
where A or B is not convex, the yielded value, denoted by
d(A, B), is actually the minimum separation or penetration
distance between the convex hull of A and the convex hull
of B but it is worth noticing that none of the convex hulls
is explicitly calculated. This can already be useful in some
scenarios, such as collision detection between bodies as needed
in robot motion planning and simulation. Nevertheless, we are
still interested in the true minimum distance between A and
B, for which a potential algorithm is discussed as follows.

IEEE TRANSACTIONS ON ROBOTICS, 2020

Algorithm 2 Algorithm for the minimum distance

Input: Sets A and B
Output: The minimum distance d(A, B)
1: d* + d(A, B)

2: X* < domains of all parameters for A and B
3L+ 0

4: while | X*| > ex do

5: Divide X* into subdomains X;’s
6.

7

8

9

for each X; do 3
d; < the lower bound d(Aj, B;) over X;
Add X to the list £

end for
10: d* < the minimum lower bound for domains in the list £
11: X* < the domain in the list £ whose lower bound is minimal

12: Remove X* from the list £
13: end while
14: return X* and d*

In fact, d(A, B) provides a lower bound of d(A, B), since
A or B is contained in its own convex hull and the minimum
distance d(A, B) between their convex hulls is less than or
equal to their true minimum distance d(A, B). Dividing A
into smaller subsets A;’s, we can deduce d(A, B) < d(4;, B)
for Vj and d(A, B) < min; d(A;, B), which implies that the
lower bound is increasing in the dividing of A. The same
property can be derived for B as well. With this lower bound,
we can derive a B&B algorithm as described in Algorithm 2.
Assume that A and B are specified by parametric functions
with all the parameters written as @ for which the total domain
is denoted by X. At every iteration of the algorithm, X*
is the domain in the list £ whose lower bound is minimal
and it is divided into subdomain X;’s, by which we divide
corresponding sets into subset A;’s and B;’s. Then, the lower
bound d(A;, B;) is calculated for each X; added to L. The
iteration stops when the domain X* is small enough. When
AN B = (), there always exists a domain in the list £ such
that the corresponding subsets of A and B contain the pair of
points whose distance is the true minimum distance d* (A, B)
between A and B. In this case, therefore, the minimum lower
bound d* in L is always bounded above by d* (A, B) and
guaranteed to converge to d* (A, B) even though A and B are
not convex. In case that AN B # (), however, d* is bounded
above by and thus converges to zero rather than d~ (A, B)
as the algorithm iterates. It is worthwhile noting that this is
still a useful result as it indicates that there are intersections
between two sets and implies potential collisions to be noticed
by motion planning algorithms.

C. Numerical Examples

Here we report some numerical tests on minimum distance
computation with the aid of Algorithm 1b or by Algorithm 2.

Example 3: We first use the GJK algorithm [1], [2] and
the expanding polytope algorithm [8], [12] to compute the
minimum distance between the convex hulls of two hearts,
which are non-convex bodies, as shown in Fig. 7a. Originally,
the two algorithms cannot be applied to this case because the
computation of the support function of non-convex bodies is
unavailable. Now we can do so with the aid of Algorithm 1b.
We first use the GJK algorithm [1], [2] to determine if
two convex hulls intersect and then calculate their minimum

separation distance when they do not. In case that they
intersect, the algorithm [8] is called to compute the minimum
penetration distance between the convex hulls. The support
function of each heart is calculated by Algorithm 1b with
ex = 107!, which has turned out to be small enough for
accurately calculating the support function, as revealed by the
test results reported in Table II. We conduct 10 trials with
randomized relative positions and orientations between two
hearts and obtain the average computation times and numbers
of iterations of the two distance algorithms with respect to
different termination tolerances, as displayed in the left half
of Table III. In the old case where the given bodies are convex
and their support functions can be calculated analytically, the
computation times of the two distance algorithms range from
several to tens of milliseconds on a modern PC [12]. Here,
their computation times are two to three orders of magnitude
longer while the numbers of iterations remain at almost the
same level. The increase in the computation time is purely
due to the computing of the support function with an iterative
numerical algorithm rather than in an analytical way.

We also compute the true minimum separation distance
between two hearts rather than their convex hulls with Al-
gorithm 2 in the above random trials where the convex hulls
of two hearts are determined to be separate. Here we take
ex = 1071, 1072, and 1073 respectively for Algorithm 2 and
€q = 10~* for the distance algorithms [1], [2], [8]. The results
are collected in the left half of Table IV. From the second
column of Table IV we see that the true minimum distance
between two hearts is often greater than the minimum distance
between their convex hulls, which is in accordance with the
fact that the hearts are concave and their convex hulls expand
the actual bodies, leading to a reduced distance between them.
Fig. 7a depicts one case where the true minimum distance is
notably greater.

Example 4: We also conduct the same distance computation
between a torus and a seashell, as depicted in Fig. 7b. The
torus is divided into eight identical segments as in Fig.4. The
minimum distance between the convex hulls of the seashell
and each segment is computed by the distance algorithms [1],
[2], [8] and the results are reported in the right half of Table III.
The right half of Table IV exhibits the results of Algorithm 2
to compute the true minimum separation distance between the
seashell and each segment of the torus. These results reflect the
same performance of the distance algorithms [1], [2], [8] with
the aid of Algorithm 1b and of Algorithm 2 as in Example
3 for the minimum distance computation.

From the CPU running time and the number of iterations
shown in Table IV, we notice that the current implementation
of Algorithm 2 is not fast enough for real-time uses. To
enhance its computational efficiency, we also tried the parallel
implementation of the for-loop in Algorithm 2 to compute
the lower bound d(A;, B;) over each subdomain X using
the ‘parfor’ command provided by the Parallel Computing
Toolbox of MATLAB. The ‘parfor’ command distributes the
loop iterations onto a parallel pool of available local workers
(four workers on the used desktop). By this straightforward
parallelism, the computation time of Algorithm 2 is reduced
by about 3 times, which is smaller than the ideal speed-up of

IEEE TRANSACTIONS ON ROBOTICS, 2020

20 ~

10 ~

220 ~|

-30 -

-40 =
-20

20
30 -10 0 ¥

(@)

A onsoO

&

(d)

Fig. 7. Examples of minimum distance computation between (a) two hearts
and (b) a torus and a seashell. The torus is divided into 8 segments in the
computation. The green and red lines represent the minimum distance between
the convex hulls of and the true minimum distance between two bodies,
respectively, where the true values are notably greater in the shown cases.

a factor of four on four workers due to the parallel overhead
including the time required for data transfer. It is noted that we
have the option to parallelize the for-loop in Algorithm 1b,
which actually runs as a subalgorithm in the for-loop in
Algorithm 2. Then, parallelizing both for-loops causes nested
parfor-loops, which is not allowed in MATLAB. Hence, we
choose to parallelize the outer loop, namely the for-loop in
Algorithm 2, which incurs a smaller parallel overhead. In the
future, we will explore other parallel implementations, such
as nested parallelism, to further improve the computational
efficiency of the algorithms.

IV. OPTIMAL GRASP PLANNING
ON CONTINUOUS SURFACES

A grasp on an object can be modeled as a set of contacts
on the object’s surface and the goal of optimal grasp plan-
ning is to compute the contact locations providing the best
performance quality. Owing to the nonlinearity of a grasp
quality measure and a general object’s surface, which can be
piecewise parameterized as nonlinear functions, optimal grasp
planning is a highly-nonlinear optimization problem, for which
computing the globally optimal solution is extremely difficult.
In this section, we attempt to solve this problem with another
B&B algorithm, in which the proposed B&B algorithm for
the support function is used in calculating an upper bound of
grasps’ quality over any domain of the object’s surface.

A. Preliminary Knowledge

Consider using m contacts to form a grasp on a 3-D object.
Let p; € R? for i = 1,2,...,m be the position of contact
1 with respect to the object coordinate frame attached at the
center of mass of the object. Assume that the object’s surface is
continuous and the three components of p; are all specified by
continuous functions of the same surface parameter x; € R2.
Let X; be the domain of x;. By differentiating p; with respect
to x;, we can derive two orthogonal unit tangent vectors o; €
R3 and t; € R3 as well as the inward unit normal n; € R3
at p; such that n; = o; x t;. Then, o;, t;, and n; establish a
local right-handed coordinate frame at p;. Moreover, we can
deduce that p;, n;, 0;, and t; have Lipschitz continuity, i.e.,

1pi(xi) — pi(@;)|| < Lyillz: — 2], (162)
[mi(xi) — ni(@;)|| < Luglle — 2], (16b)
|oi(x:) — 0i(x})]] < Loill@i — 2], (16¢)

[ti(z:) — ti(z;)|| < Leillzi — i (16d)

where @} is a value of the surface parameter other than x; and
Ly, Lyni, Loi, and Ly; are nonnegative real constants, which
can be estimated from the parametric expressions of p;, n;,
o;, and t;, respectively, similarly to (9).

The contact force f; € R? at p; can be exgl)fessed in the
local coordinate frame as f; = [fi1 fiz fiz] ., where fi1,
fi2, and f;3 are the components of f; along n;, o;, and t;,
respectively. It can be converted to a wrench w; with respect
to the object coordinate frame by

w; = G, f;
where G; is a linear mapping that can be written as
G, — n; o; t; cRO%3. (17
Di XM PiX0; Ppi Xt

To avoid slippage at contact, f; must belong to the following
convex cone, known as the friction cone [47],

F, £ {fi ER® | f;1 >0, \/fA+ 4 < Mifﬂ} (18)

where p; is the Coulomb friction coefficient. The primitive
contact force set U; consists of contact forces with unit normal
component on the boundary of F; [14],

Uié{fiER:‘fil:L VA Z_23:m}-

19)

IEEE TRANSACTIONS ON ROBOTICS, 2020

TABLE III. RESULTS OF DISTANCE COMPUTATION BY EXISTING ALGORITHMS

. Heart & Heart Torus & Seashell
d i NT v NY & N— tt NT @ NY N—
102 [2.198 1041 0808 3.53 2954 11.09 | 0.901 437 0561 2.64 2146 9.60
1073 | 2759 13.13 0813 353 3.724 1506 | 1.118 572 0560 2.64 2726 1295
10~% | 3282 1576 0812 353 4435 1899 | 1.328 7.05 0560 2.64 3279 16.17
107% | 3797 1839 0811 353 5.112 2269 | 1.548 843 0560 2.64 3.804 19.23
eq—Termination tolerance for the distance algorithms [1], [2], [8] as explained in the caption of Fig. 6;
t, N—Average CPU running time (unit: second) and number of iterations of a distance algorithm;
Superscript “+/0” refers to the GJK algorithm [1], [2] in the separation/penetration case;
Superscript “—" refers to the algorithm [8] for the penetration distance.
TABLE IV. RESULTS OF TRUE DISTANCE COMPUTATION BY ALGORITHM 2
ex Heart & Heart Torus & Seashell
A3we tave tmax tmin Nave Nmax Nmin Aawe tave tmax tmin Nave Nmax Nmin
10T [01726 4785 261.32 1332 41.53 2121 22 0.0309 18.00 19795 347 48.36 1610 23
1072 | 0.1731 6131 1213.6 1498 21881 17046 38 0.0310 2230 94599 4.14 16892 23839 38
1073 | 0.1731 86.13 45460 1526 812.23 106 50 0.0310 44.07 26642 473 11374 108 51

A—The minimum separation distance between two bodies minus the minimum distance between their convex hulls;

t—CPU running time of Algorithm 2 (unit: second);

N—Number of iterations of Algorithm 2 (106 is the maximum number of iterations allowed).

The image W; of U, through G; as given below is called the
primitive contact wrench set,
wW; = G;(Uy). (20)

The grasp wrench set is defined as the convex hull of the union
of W;,©+=1,2,...,m for all contacts [48], [19], i.e.,

W £ CH GWZ-

i=1

2L

where CH(-) denotes the convex hull of a set. The set W
consists of all the wrenches that can be applied to the object
by all m contacts with unit sum of normal contact forces. A
well-known grasp quality measure is defined in terms of the
minimum distance (12) from the origin to W [19], [21], i.e.,

o= —d(W,0) = min hy (u)

uTu=1

(22)

where hyy (u) is the support function of W along a vector u €
RS, The value o is positive and non-positive for a grasp having
and not having force closure, respectively, and a greater o
implies a better grasp. Physically, o reflects the overall ability
of a grasp to apply wrenches to the object in all directions.

From the above arguments, ¢ depends on the parameters
x;’s specifying the contact locations. Then, the goal of optimal
grasp planning is to compute x; € X;, ¢ = 1,2,...,m such
that o is maximal, which can be written as

maximize o 23)
subject to x; € X;, i=1,2,...,m.

Because the object’s surface, the friction cone (18), and the
distance function in (12) are all nonlinear, ¢ is a nonlinear
function of x;’s and (23) is a nonlinear optimization problem
with many local maxima. It is extremely hard to compute the
globally optimal solution to such a problem. To the best of
author’s knowledge, there is no effective algorithm to solve
this problem without any approximation until now.

B. Planning Algorithm

For problem (23) we propose a B&B algorithm, which is
aimed at yielding a solution with guaranteed or even global
optimality. To do this, we first introduce an upper bound of o
over the domain X = X; ® Xo ® --- ® X,,, of the problem,
where ® represents the Cartesian product of sets. Referring
to the primitive contact wrench set W; defined by (20) for a
singe contact point, we can define a wrench set W; for the
piece of the object’s surface corresponding to the domain X;
as the union of W; for all points in the piece,

wis) Wi
x; €X;

(24)

Then, similarly to the grasp wrench set W and quality value
o, we can define a set W as (21) with W; replacing W; and
a scalar value 6 as (22) with 1474 replacing W. From (24),
the grasp wrench set W for any grasp in the domain X is
contained in T, by which we obtain Ay (u) < hyi, (u) for Vu
and o < 6 from (22). Hence, ¢ is an upper bound of o over
X. Furthermore, for the same reason we can derive W' cw
and ¢’ < & for any subdomain X’ C X, where W' and &'
are the wrench set and the upper bound for X', respectively.
This implies that the upper bound is monotonically decreasing
during the dividing of a domain as needed in a B&B algorithm.

The wrench set 1/ and/or the scalar value & have been pro-
posed before for discrete surface point sets [42], special sur-
face elements (points, line segments, and convex facets) [49],
and the entire object’s surface [22]. However, the computing
of & is limited to the special cases and there is no algorithm
to compute & for a general continuous surface. Prior to the
discussion on how to compute the upper bound &, we recall
how the grasp quality measure o is computed. As defined in
terms of the minimum distance in (22), o can be calculated by
the distance algorithms [2], [8], as depicted in Fig. 6, and the
support function hy (w) and mapping sy (u) of W need to
be calculated at every iteration. Luckily, hAw (u) and sy (u)

IEEE TRANSACTIONS ON ROBOTICS, 2020

for any u can be calculated in a closed form as [14]

hw (u) = hw,. (u),

sw(u) = sw,. (u)

(25a)
(25b)

where i* = argmax;_; 5, hw,(u). Furthermore, Ay, (u)
and sy, (u) can be calculated by

hw, (w) = di + piy/d3y + d3, (26a)
T
Hidi2 Hid;3
Sw, (u) =G; |1 (26b)
Vi + &3 dy + d

where d;1, d;2, and d;3 are the components of d; given by
d; =uTG,. (27)

In case that \/d% + dZ; in (26) is zero, which rarely happens
though, sy, (u) can be taken to be the first column of G,
ie., sw,(u) = [n] pI x n;fF]T, such that hy, (u) = d;1.
Also defined as the minimum distance, the upper bound &
can be calculated by the same distance algorithms [2], [8] as
used to compute 0. However, we shall compute h;, (u) in this
case, which is more difficult than the computing of hy (u),
since W is defined over m domains X,’s rather than m contact
points. A closed-form expression of h;, (u) might be derivable
for some special surfaces, such as a planar surface. In general,
for a curved continuous surface we can only compute A, (u)
numerically. To do this, similarly to (25) we first have

hyir(w) = hyy;,, (w),
sy (u) = sy (u)

where i = argmax;_ 5 ., by, (w). From (24) we further
derive

(28a)
(28b)

hy, (u) = max hw, (u), (29a)

i

sy, (u) = by (u) (29b)

where W is the primitive wrench contact set W; at = for
which Ay, (u) is maximal over X;. Comparing (29a) with
(2) we see that hy, (u) can be calculated in the same way
as hg(u) if we can derive a monotonically decreasing upper
bound for hyy,(u) as for u® f(x). From (17), (26a), and
(27) as well as the Lipschitz continuity of p;, n;, 0;, and t;
described by (16), it is not so difficult to deduce that hyy, (u)
has Lipschitz continuity as well, which can be written as

|, (w) = hywy (w)| < L[l —]|

(30)

where T/ is the primitive contact wrench set at x} and x| is
an arbitrary point in X;. Equation (30) is similar to (4). Then,
following (5) and (6) we attain an upper bound of A, (u) as

hw, (w) £ by, (w) + Ly max [lz; — & €1V
where &; is the center of domain X; and W; is the primitive
contact wrench set at &;. Furthermore, similarly to (7), we
can prove that the upper bound given by (31) is monotonically
decreasing in dividing X;. With this upper bound, therefore,
hyy, (u) can be calculated similarly by Algorithm 1a or 1b
and consequently & by the distance algorithms [2], [8].

Algorithm 3 Algorithm for the optimal grasp

Input: Object surface functions with domains X;, 1 =1,2,...,m

Output: Solution * giving an optimal grasp on the object

I X+ X

2: & < the upper bound of o over X

a0

4: 0¥ <0

5: L+ 0

6: while X # () and 6 — o* > € do .

7 Use any heuristic to find a relatively better grasp in domain X with
corresponding surface parameters & and quality value &

8 if & > o* then

9: T — T

10: o* <G

11: end if

12: if [X] > ex then

13: Divide X into subdomains X;’s

14: for each X; do

15: 0 < the upper bound of o over X;

16: if 5; > o* then

17: Add X to the list £

18: end if

19: end for

20: end if

21: G < the maximum upper bound for domains in the list £
22: X < the domain in the list £ whose upper bound is maximal

23: Remove X from the list £
24: end while
25: return x* and o*

With the upper bound of the grasp quality over a domain, the
B&B algorithm for solving (23) is described in Algorithm 3.
At every iteration of the algorithm, a local search or sampling
in the selected domain X is performed first to quickly obtain a
grasp with relatively higher quality in X and possibly update
the current best grasp. If X is small enough, it is believed that
the attained grasp is close enough to the optimal grasp in X
and X will not be further divided; otherwise, X is divided into
subdomains, which will be added to the list £ if their upper
bounds are greater than the quality value o* of the current best
grasp. Finally, X is updated with the domain in £ whose upper
bound is maximal. In case that £ is empty at this moment, we
can simply set X to empty to stop the algorithm.

Algorithm 3 is aimed at solving (23) globally, for which the
condition is that the local optimizer can compute the globally
optimal grasp in any domain X with its size |X| < ex. To
ensure this, the tolerance ex on \X | tends to be small, which
will facilitate the computing of the globally optimal grasp in
X but on the other hand cause more domains to be added to
the list £ and increase the required number of iterations by
Algorithm 3. In practice, we may set other stopping criteria,
such as the maximum allowable iteration number or running
time, for the algorithm to compute near-optimal grasps within
an acceptable time and give consideration to both its result’s
optimality and computational efficiency.

C. Numerical Examples

We again implemented Algorithm 3 in MATLAB on the
desktop with an Intel Core i7-6700 3.40GHz CPU and 16GB
RAM and tested it on several objects. To seek a good grasp in
the selected domain X at every iteration of Algorithm 3, we
call the interior-point algorithm provided by the Optimization
Toolbox of MATLAB with its default setting and the middle

IEEE TRANSACTIONS ON ROBOTICS, 2020

N

=}

(b)

Fig. 8. Grasps with three contacts on the ellipsoid yielded by Algorithm 3
at the (a) 3-rd iteration with o = 0.0730 and (b) 139-th iteration with o =
0.1632.

(b)

Fig. 9. Grasps with four contacts on the ellipsoid yielded by Algorithm 3 at
the (a) O-th iteration with o = 0.2017 and (b) 2-nd iteration with o = 0.2385.
The shadow areas indicate the domains in which the contact locations are
obtained by the local search using the interior-point algorithm.

point of X as the initial point to solve the optimization
problem same as (23) over X. The tolerance ex on |X | is
taken to be 10~! and |X| is defined to be the maximum
interval in X. In addition, we set the maximum running time
allowed for Algorithm 3 to 48 hours.

Example 5: We first use the algorithm to compute optimal
grasps with three and four contacts on the ellipsoid, as shown
in Figs. 8 and 9, respectively. Since the ellipsoid is a symmetric
object, there will be many equivalent subdomains if we set
the initial domain for each contact to be 6 € [—7/2,7/2] and
¢ € [0, 27]. To avoid this, we set the initial domain as listed in
the first column of Table V. In the case of three contacts, after
3 iterations of Algorithm 3 in about 20 minutes, we obtain the
first force-closure grasp with o = 0.0730, as shown in Fig. 8a.
After 139 iterations in nearly 36 hours, we obtain a much
better grasp with ¢ = 0.1632, as shown in Fig. 8b, which is
the best grasp that we obtain within the time limit. Intuitively,
the globally optimal grasp should be attained at one of the

13

ol

(2)

Fig. 10. Intuitive search for the globally optimal grasp with three contacts on
the ellipsoid. One contact (marked by the black square) is outermost on the
(a) —z, (b) —y, (c) —z axis and the other two are symmetrically located on
the boundary of the (a) zy or zz, (b) yx or yz, (c) zx or zy cross section.

0.2 T

0.15

0.05 -

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6

Fig. 11. The quality value o of the grasp with respect to the variable o as
depicted in Fig. 10.

cases where one contact is located at the outermost point on
the ellipsoid along the —z (resp. —y and —z) direction and
the other two contacts are symmetrically distributed on the
boundary of the cross section by the xy or xz (resp. yx or
yz and zx or zy) plane, as depicted in Fig. 10. The quality
values of all grasps in the six cases are plotted in Fig. 11, in
which the maximum o = 0.1673 is obtained at o = 0.9094 in
the zy case depicted in Fig. 10c and the corresponding grasp
is very close to the one shown in Fig. 8b.

The results in the case of four contacts are also displayed
in Table V. The first force-closure grasp and the final grasp
obtained within the time limit are shown in Figs. 9a and 9b,
respectively. Again, to verify the global optimality of the final
grasp, we let four contacts move on the ellipsoid in two ways
as indicated in Figs. 12a and 12b, respectively, where we think
the globally optimal grasp should exist. Fig. 13 describes the
quality values of those grasps in the two cases. In Fig. 13a the
maximum value of o is 0.2399 and obtained at § = 0.7250
and ¢ = 1.3690, while in Fig. 13b the maximum value of o
is 0.2202 and obtained at # = 0.8055 and ¢ = 1.3690. Both
give a grasp similar to the one shown in Fig. 9b.

Example 6: We now apply Algorithm 3 to more complex
objects, the heart and the seashell, as depicted in Figs. 14-17.
Tables VI and VII show the results and key performance of
the algorithm. On the heart, which is a symmetric object, it
is relatively easier to attain a force-closure grasp with good
quality as such a grasp has been found in the initial domain in
both three- and four-contact cases, as indicated by the fourth
column of Table VI. The final grasp accords with our intuition

IEEE TRANSACTIONS ON ROBOTICS, 2020

TABLE V. RESULTS OF ALGORITHM 3 ON THE ELLIPSOID

¢ | Initial domains for (6;, ¢;) t N Contacts (0;, p;) o t N Contacts o

1 [0,7/2] x [0,7/2] (0.9226,0.2208) (0.7291,1.5672)

2 [0,7/2] x [0, 37/2] 124996 3 (0.1835,3.1035) 0.0730 | 129198 139 (0.8365,4.7098) 0.1632
3 [—7/2,0] x [0, 2] (—0.6731,6.0299) (—1.4892,4.6953)

1 [0,7/2] x [0, 7/2] (0.7854,0.7854) (0.5194,1.4132)

2 [0,7/2] x [m,37/2] (0.7854, 3.9270) (0.8712,4.4825)

3 [—7/2,0] X [7/2, 7] 366.320 0 (—0.7854,2.3562) 0.2017 | 111718 2 (—0.9334,1.8419) 0.2385
4 [=7/2,0] x [37/2, 27] (—0.7854,5.4978) (—0.5374,4.9057)

t, N—CPU running time (unit: second) and number of iterations of the algorithm.

(@ (b)

Fig. 12. Intuitive search for the globally optimal grasp with four contacts on
the ellipsoid. One contact (in red color) moves on one eighth of the ellipsoid
in the first octant and the other three (in different colors) move accordingly.
The pair of solid and hollow arrows in the same color as a contact indicates
two moving directions of the contact. The movements of contacts indicated
by the solid or hollow arrows are described by the same parameter 6 or ¢,
and the points shown in the figure are the initial contact locations.

for being the optimal grasp, as shown especially in Fig. 15b.
By contrast, forming a good grasp on the irregular seashell is
much more difficult. The algorithm needs some iterations to
produce the first force-closure grasp and the quality value o
of the final grasp is notably smaller.

From the above examples, we see that Algorithm 3 tends to
yield the optimal grasp but its major limitation lies in the need
of significant amount of computation time. A similar parallel
implementation to Algorithm 2 as discussed in Section III-C
can speed up Algorithm 3 by 2 to 3 times. Being intended
for the optimal grasp planning in a highly nonlinear form,
however, the algorithm takes hours to give a good result so
far. The termination condition X # 0 or &6 —o* > € was
not reached in the reported examples and the algorithm was
terminated because its running time exceeded the given limit.
This leaves the risk that the computed grasp is not guaranteed
to be the globally optimal grasp.

V. CONCLUSION AND FUTURE WORK

In view of the necessity of computing the support function
in many existing algorithms and its current limitation to simple
convex sets, in this paper we first present a B&B algorithm
to calculate the support function of complex sets that are
described by functions with Lipschitz continuity and can have
continuous non-convex boundaries. Based on the Lipschitz
continuity, we derive an upper bound on the support function
of such a set and prove that the upper bound is decreasing and
converges to the exact value of the support function through a
B&B procedure. With this new general computational method
for the support function, we then can 1) compute the bounding

(b)

Fig. 13. The quality value o of the grasp with respect to the variables 6 and
¢ as depicted in Fig. 12. The values o for non-force-closure grasps are forced
to be zero in these plots.

polytope of a complex set, 2) extend the existing algorithms
to compute the minimum distance between the convex hulls
of and derive a new algorithm to compute the true minimum
separation distance between two complex sets, and finally 3)
develop an algorithm for globally optimal grasps on objects
with continuous surfaces.

In terms of future work, first, we would like to explore
possibilities to enhance the computational efficiency of the
proposed algorithms. We may consider more appropriate up-
per/lower bounds and branching strategies such that a B&B
procedure can more quickly narrow down the candidate do-
main and determine the optimal solution. Moreover, we can

IEEE TRANSACTIONS ON ROBOTICS, 2020

15

TABLE VI. RESULTS OF ALGORITHM 3 ON THE HEART

¢ | Initial domains for (6;, ¢;) t N Contacts (0;, p;) o t N Contacts o
1 [x/16, 7] x [0, 7/2] (1.6092,0.7726) (2.5430,1.1372)
2 [w/16, 7] x [0, 7] 115487 0 (1.6055,1.9442) 0.1439 | 76025.6 84 (1.0408,1.7943) 0.1817
3 [7/16, 7] X [, 27] (1.5690,4.7185) (2.1414,4.6416)
1 [7/16,7/2] x [0, /2] (1.1104,0.8611) (1.1261,1.5433)
2 [7/16,7/2] X [7,37/2] (1.1351,3.8467) (1.1253,4.6509)
3 [7/2,7] % [x/2,7] 851053 0 (9 9548, 0.4754) 02640 | 141604 375 3174.3.1181) 0396
4 [7/2, 7] x [37/2, 27] (2.2540, 5.6752) (2.3133,6.2594)
t, N—CPU running time (unit: second) and number of iterations of the algorithm.
TABLE VII. RESULTS OF ALGORITHM 3 ON THE SEASHELL
¢ | Initial domains for (6;, ¢;) t N Contacts (0;, ¢;) o t N Contacts o
1 [2, 67 X [0, 27] (8.6009, 4.7045) (10.137,0.6318)
2 (27, 67] x [0, 7] 3909.32 1 (1.4286,1.6078) 0.0245 | 83218.0 66 (17.833,2.2038) 0.0670
3 27, 67] X [, 27] (1.3508,4.4185) (7.5657,5.1650)
1 [27, 67 X [0, 27] (7.2083,2.0026) (9.0618, 2.4150)
2 [27, 6] X [0, 27] (7.6075,4.8071) (6.6175,5.5518)
3 [27, 6] x [0, 7] 726201 8 16076, 1.3927) 01149 | 4798412 g 0ug 1 g0ar) 0164
4 [27, 67] x [r, 2n] (16.122,4.2519) (15.493, 5.5964)
t

, N—CPU running time (unit: second) and number of iterations of the algorithm.

(b)

Fig. 14. Grasps with three contacts on the heart yielded by Algorithm 3 at the
(a) O-th iteration with o = 0.1439 and (b) 84-th iteration with o = 0.1817.

take advantage of parallel computing to speed up some opera-
tions in the algorithms, such as the computing of upper/lower
bounds for subdomains. Second, we can extend the algo-
rithms to other types of continuous functions, such as Holder
continuous functions, which possess a more general form of

(b)

Fig. 15. Grasps with four contacts on the heart yielded by Algorithm 3 at the
(a) O-th iteration with o = 0.2640 and (b) 37-th iteration with o = 0.3963.

continuity than Lipschitz continuity. Third, the computation of
the true minimum penetration distance between overlapping
non-convex sets remains as an open problem, which deserves
further exploration. In addition, we will explore other situ-
ations that need the computing of support function and can

IEEE TRANSACTIONS ON ROBOTICS, 2020

(@ (b)

Fig. 16. Grasps with three contacts on the seashell yielded by Algorithm 3
at the (a) 1-st iteration with ¢ = 0.0245 and (b) 66-th iteration with o =
0.0670.

(b)

Fig. 17. Grasps with four contacts on the seashell yielded by Algorithm 3
at the (a) 8-th iteration with o = 0.1149 and (b) 12-th iteration with o =
0.1641.

benefit from this new computational technique.

[11

[2]

[3]

[4]

[51

[6]

REFERENCES

E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for
computing the distance between complex objects in three-dimensional
space,” IEEE Transactions on Robotics and Automation, vol. 4, no. 2,
pp. 193-203, 1988.

E. G. Gilbert and C. P. Foo, “Computing the distance between general
convex objects in three-dimensional space,” IEEE Transactions on
Robotics and Automation, vol. 6, no. 1, pp. 53-61, 1990.

S. A. Cameron, “Enhancing GJK: Computing minimum and penetration
distances between convex polyhedra,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Albuquerque,
NM, April 1997, pp. 3112-3117.

, “A comparison of two fast algorithms for computing the distance
between convex polyhedra,” IEEE Transactions on Robotics and Au-
tomation, vol. 13, no. 6, pp. 915-920, 1997.

C. J. Ong and E. G. Gilbert, “The Gilbert-Johnson-Keerthi distance
algorithm: A fast version for incremental motions,” in Proceedings
of the IEEE International Conference on Robotics and Automation,
Albuquerque, NM, April 1997, pp. 1183-1189.

——, “Fast versions of the Gilbert-Johnson-Keerthi distance algorithm:
additional results and comparisons,” IEEE Transactions on Robotics and
Automation, vol. 17, no. 4, pp. 531-539, 2001.

[7

—

[8

—

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

K. Sridharan, H. E. Stephanou, K. C. Craig, and S. S. Keerthi, “Distance
measures on intersecting objects and their applications,” Information
Processing Letters, vol. 51, no. 4, pp. 181-188, 1994.

Y. Zheng, “An efficient algorithm for a grasp quality measure,” IEEE
Transactions on Robotics, vol. 29, no. 2, pp. 579-585, 2013.

X.-Y. Zhu, H. Ding, and Y. L. Xiong, “Pseudo minimum translational
distance between convex polyhedra (i): definition and properties,” Sci-
ence in China, Ser. E, vol. 44, no. 2, pp. 216-224, 2001.

X.-Y. Zhu and J. Wang, “Synthesis of force-closure grasps on 3-D
objects based on the @ distance,” IEEE Transactions on Robotics and
Automation, vol. 19, no. 4, pp. 669-679, 2003.

X.-Y. Zhu, H. Ding, and S. K. Tso, “A pseudodistance function and its
applications,” IEEE Transactions on Robotics and Automation, vol. 20,
no. 2, pp. 344-352, 2004.

Y. Zheng and K. Yamane, “Generalized distance between compact con-
vex sets: algorithms and applications,” IEEE Transactions on Robotics,
vol. 31, no. 4, pp. 988-1003, 2015.

——, “Ray-shooting algorithms for robotics,” IEEE Transactions on
Automation Science and Engineering, vol. 10, no. 4, pp. 862-874, 2013.
Y. Zheng and C.-M. Chew, “Distance between a point and a convex
cone in n-dimensional space: computation and applications,” [EEE
Transactions on Robotics, vol. 25, no. 6, pp. 1397-1412, 2009.

——, “Fast equilibrium test and force distribution for multi-contact
robotic systems,” ASME Journal of Mechanisms and Robotics, vol. 2,
no. 2, p. 021001, 2010.

Y. Zheng, M. C. Lin, D. Manocha, A. H. Adiwahono, and C.-M. Chew,
“A walking pattern generator for biped robots on uneven terrains,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, Taipei, Taiwan, October 2010, pp. 4483-4488.

Y. Zheng and K. Yamane, “Human motion tracking control with strict
contact force constraints for floating-base humanoid robots,” in Proc.
IEEE-RAS Int. Conf. Humanoid Robots, Atlanta, GA, 2013, pp. 34-41.
——, “Adapting human motions to humanoid robots through time
warping based on a general motion feasibility index,” in Proc. IEEE
Int. Conf. Robot. Automat., Seattle, WA, 2015, pp. 6281-6288.

C. Ferrari and J. F. Canny, “Planning optimal grasps,” in Proceedings of
the IEEE International Conference on Robotics and Automation, Nice,
France, May 1992, pp. 2290-2295.

M. Teichmann, “A grasp metric invariant under rigid motions,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, 1996, pp. 2143-2148.

Y. Zheng and W.-H. Qian, “Improving grasp quality evaluation,”
Robotics and Autonomous Systems, vol. 57, no. 6-7, pp. 665-673, 2009.
N. S. Pollard, “Parallel methods for synthesizing whole-hand grasps
from generalized prototypes,” Ph.D. dissertation, Dept. Elect. Eng.
Comput. Sci., Mass. Inst. Technol., 1994.

C. Borst, M. Fischer, and G. Hirzinger, “Grasp planning: how to choose
a suitable task wrench space,” in Proceedings of the IEEE International
Conference on Robotics and Automation, New Oeleans, LA, April 2004,
pp. 319-325.

R. Haschke, J. J. Steil, I. Steuwer, and H. Ritter, “Task-oriented quality
measures for dextrous grasping,” in Proc. IEEE Int. Conf. Comp. Intell.
Robot. Autom., Espoo, Finland, June 2005, pp. 689-694.

M. Strandberg and B. Wahlberg, “A method for grasp evaluation based
on disturbance force rejection,” IEEE Transactions on Robotics, vol. 22,
no. 3, pp. 461-469, 2006.

Y. Lin and Y. Sun, “Grasp planning to maximize task coverage,”
International Journal of Robotics Research, vol. 34, no. 9, pp. 1195—
1210, 2015.

Y. Zheng and K. Yamane, “Evaluation of grasp force efficiency con-
sidering hand configuration and using novel generalized penetration
distance algorithm,” in Proc. IEEE Int. Conf. Robot. Automat., Karlsruhe,
Germany, 2013, pp. 1580-1587.

K. Hang, F. T. Pokorny, and D. Kragic, “Friction coefficients and grasp
synthesis,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, Tokyo, Japan, November 2013, pp.
3520-3526.

A. T. Miller and P. K. Allen, “Examples of 3D grasp quality computa-
tion,” in Proceedings of the IEEE International Conference on Robotics
and Automation, Detroit, MI, 1999, pp. 1240-1246.

C. Borst, M. Fischer, and G. Hirzinger, “A fast and robust grasp planner
for arbitrary 3D objects,” in Proceedings of the IEEE International
Conference on Mechatronics and Automation, Detroit, Michigan, May
1999, pp. 1890-1896.

Y. Zheng, “Computing the best grasp in a discrete point set with wrench-
oriented grasp quality measures,” Autonomous Robots, vol. 43, no. 4, pp.
1041-1062, 2019.

IEEE TRANSACTIONS ON ROBOTICS, 2020

[32] A. T. Miller and P. K. Allen, “Grasplt! a versatile simulator for robotic
grasping,” IEEE Robotics & Automation Magazine, vol. 11, no. 4, pp.
110-122, 2004.

G. F. Liu, J. J. Xu, and Z. X. Li, “On quality functions for grasp synthe-
sis, fixture planning, and coordinated manipulation,” IEEE Transactions
on Automation Science and Engineering, vol. 1, no. 2, pp. 146-162,
2004.

X.-Y. Zhu and H. Ding, “Computation of force-closure grasps: an
iterative algorithm,” IEEE Transactions on Robotics, vol. 22, no. 1, pp.
172-179, 2006.

Z. X. Xue, J. M. Zoellner, and R. Dillmann, “Automatic optimal
grasp planning based on found contact points,” in Proceedings of the
IEEE/ASME International Conference on Advanced Intelligent Mecha-
tronics, Xi’an, China, July 2008, pp. 1053-1058.

T. Watanabe and T. Yoshikawa, “Grasping optimization using a required
external force set,” IEEE Transactions on Automation Science and
Engineering, vol. 4, no. 1, pp. 52-66, 2007.

M. A. Roa and R. Sudrez, “Computation of independent contact regions
for grasping 3-D objects,” IEEE Transactions on Robotics, vol. 25, no. 4,
pp. 839-850, 2009.

H. K. Dai, A. Majumdar, and R. Tedrake, “Synthesis and optimization
of force closure grasps via sequential semidefinite programming,” in
International Symposium on Robotics Research, 2015.

A. Sintov, R. J. Menassa, and A. Shapiro, “A gripper design algorithm
for grasping a set of parts in manufacturing lines,” Mechanism and
Machine Theory, vol. 105, pp. 1-30, 2016.

Y. Zheng, “Computing the globally optimal frictionless fixture in a
discrete point set,” IEEE Transactions on Robotics, vol. 32, no. 4, pp.
1026-1032, 2016.

K. Hang, M. Li, J. A. Stork, Y. Bekiroglu, F. T. Pokorny, A. Billard, and
D. Kragic, “Hierarchical fingertip space: a unified framework for grasp
planning and in-hand grasp adaptation,” IEEE Transactions on Robotics,
vol. 32, no. 4, pp. 960-972, 2016.

K. Hang, J. A. Stork, N. S. Pollard, and D. Kragic, “A framework for
optimal grasp contact planning,” IEEE Robotics and Automation Letters,
vol. 2, no. 2, pp. 704-711, 2017.

J. A. Haustein, K. Hang, and D. Kragic, “Integrating motion and
hierarchical fingertip grasp planning,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Singapore, May-
June 2017, pp. 3439-3446.

Y. Zheng, “Computing bounding polytopes of a compact set and related
problems in n-dimensional space,” Computer-Aided Design, vol. 109,
pp. 22-32, 2019.

S. R. Lay, Convex Sets and their Applications.
John Wiley & Sons, 1982.

S. A. Cameron and R. K. Culley, “Determining the minimum trans-
lational distance between two convex polyhedra,” in Proceedings of
the IEEE International Conference on Robotics and Automation, San
Francisco, CA, April 1986, pp. 591-596.

R. M. Murray, Z. X. Li, and S. S. Sastry, A Mathematical Introduction
to Robotic Manipulation. Boca Raton, FL, USA: CRC Press, 1994.
B. Mishra, J. T. Schwarz, and M. Sharir, “On the existence and synthesis
of multifingered positive grips,” Algorithmica, vol. 2, no. 4, pp. 541-558,
1987.

Y. Zheng and W.-H. Qian, “New advances in automatic selection of
eligible surface elements for grasping and fixturing,” Robotica, vol. 28,
no. 3, pp. 341-348, 2010.

[33]

[34]

[35]

[36]
[37]
[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45] New York, NY, USA:

[46]

(471

(48]

[49]

[IYu Zheng received the B.E. degrees in both mechanical
engineering and computer science and the Ph.D. degree in
mechatronics from Shanghai Jiao Tong University, China, in
2001 and 2007, respectively, and the M.S. and Ph.D. degrees
in computer science from the University of North Carolina at
Chapel Hill, in 2011 and 2014, respectively.

Between 2007 and 2009, he was a Postdoctoral Research
Fellow with the Department of Mechanical Engineering, Na-
tional University of Singapore. He worked as a Lab Associate,
a Research Associate, and finally a Postdoctoral Researcher at
Disney Research Pittsburgh between 2010 and 2014. From
2014 to 2018, he was an Assistant Professor with the Depart-

ment of Electrical and Computer Engineering, University of
Michigan-Dearborn. He joined Tencent Robotics X in Septem-
ber 2018 and currently is a Principal Research Scientist.
His research interests include multi-contact/multi-body robotic
systems, robotic grasping and manipulation, legged robots, and
various algorithms for robotics. He serves as an Associate
Editor for IEEE Robotics and Automation Letters.

[(Kaiyu Hang received his B.S. degree in Information
Engineering from Xi’an Jiaotong University, Xi’an, China, in
2010, and M.Sc. degree in Communication Systems and Ph.D.
in Computer Science, specialized in Robotics and Computer
Vision, from KTH Royal Institute of Technology, Stockholm,
Sweden, in 2012 and 2016, respectively.

He is a postdoctoral associate at the GRAB lab, Yale Univer-
sity, CT, USA. His research interests include representations
and optimization for robotic manipulation, motion planning,
adaptive grasping and in-hand manipulation, underactuated
robotic hands, dual-arm manipulation, and mobile manipula-
tion.

